災害時に活用できる地質調査技術カタログ Ver1.1

2025年10月

一般社団法人 全国地質調査業協会連合会

はじめに

本カタログは、令和6年能登半島地震を契機として、災害時に活用可能な地質調査技術を体系的に整理・紹介することを目的に作成したものです。地質調査は、災害発生時の迅速な状況把握、復旧・復興に向けた的確な判断、そして将来の防災・減災に向けた基盤づくりにおいて、極めて重要な役割を担っています。

全国地質調査業協会連合会では、「災害時に頼られる地質調査業界」を目指し、自然災害への対応能力向上のための技術革新と体制強化に取り組んでいます。本カタログでは、災害時に「何が分かる技術なのか」「どのような場面で使えるのか」「どのような成果が得られるのか」を明確に示すことを目的とし、災害時に求められる迅速で広域な対応を可能とする比較的新しい調査技術を対象に、全国地質調査業協会連合会が整理・編集を行いました。技術の評価は国によるものではありませんが、現場での実績や有用性を踏まえ、発注者の皆様が参考にできるよう構成しています。

構成は「ユースケース編」と「要素技術編」の二部からなり、前者では災害時に地質調査に求める具体的な課題に対する対応事例を示し、後者ではその課題を解決する地質調査技術の特徴や活用事例を詳細に紹介しています。記載されている技術内容は、現場での有用性を重視し、業界としての知見をもとに整理・掲載しています。

応急対策や災害査定、復旧工事などの災害対応には、情報収集の迅速性、地域特性の把握、調査手法の選定、住民への情報提供、長期的なモニタリング、資源・人材の確保など、複雑かつ 多岐にわたる課題があります。本カタログは、これらの課題に対応するための技術的選択肢を提供し、発注者の皆様が状況に応じた最適な判断を行えるよう支援することを目的としています。

今後も技術の進展に応じて内容の更新を行い、より実用的で信頼性の高い情報提供を目指してまいります。本カタログが、災害対応における技術選定の一助となり、発注者の皆様の業務に貢献できることを願っております。

全国地質調査業協会連合会 技術委員長 天野 洋文

本カタログは「ユースケース編」と「要素技術編」の二部構成です。ユースケース編では災害時に直面する課題ごとに役立つ地質調査技術を Q&A 形式で紹介し、要素技術編では各技術の特徴や活用事例を詳細に解説しています。ご利用の際は、まず課題から該当するユースケースを参照し、その後に要素技術編で詳細情報をご確認ください。なお、災害時に迅速・広域な対応を可能にする比較的新しい地質調査技術を中心に整理したものです。地表踏査・ボーリング・各種現場試験などの標準的調査も災害対応に不可欠ですが、それらは他の指針・要領に委ね、ここでは連携・補完の観点から新技術の適用場面と成果を示します。

目 次

【用語の定義】		 	• •	• • •	 •	 	 • •	• •	 • •	 	 	 	 •	 	 •	 1
【ユースケース	編】	 		• • •	 	 	 		 	 	 	 	 •	 	 •	 2
【要素技術編】		 			 	 	 		 	 	 	 		 		 10

【用語の定義】

・センシング

構造の位置や応答等を、精度を明確にしたうえで、センサを利用して計測する行為

・探査

地下の構造を把握するために、さまざまな手法を用いてデータを収集する行為

· 地盤評価

調査に基づいて地下の地盤の特性や安定性、強度を分析し、建設や土木工事の適性を判断する行為

・分析

土壌サンプルの物理的および化学的特性を評価し、地盤の性質や適性を把握する行為

・モニタリング

構造の位置や応答等の対象とするセンシング(計測)項目について、精度・頻度等を明らかにしたうえで、時間的に連続的または離散的に計測し続ける行為

・モデリング

収集したデータを基に地下の地質構造や挙動を視覚化・シミュレーションし、理解や予測を 行うプロセス

・・・時期

発災直後(災害発生~1週間):人命救助、災害による被害の初期評価

応急対応(1週間~1カ月) :ライフラインの応急対応、対策方針検討、災害査定

復旧復興(1カ月~数年):地盤の設計定数設定、インフラの修復

※今回は災害時に役立つという主眼のもとで時期を想定しているが、事前対策としても地質調査はもちろん有効である。なお、災害前後での差分解析を実施する場合には被災前のデータが必要となる

【ユースケース編】

災害時に直面する課題に対して、Q&A 形式で、役立つ地質調査技術を紹介します。

Q1 現地にアクセスできないが災害状況を把握したい。 Q2 災害発生前後の状況変化を把握したい。 Q3 広域での災害状況を把握したい。 Q4 被災地の詳細な地形データを取得したい。 Q4 被災地の詳細な地形データを取得したい。 Q5 地盤災害に関する二次災害リスクを評価したい。 Q6 災害後の法面の変状を効率的に把握したい。	
Q3 広域での災害状況を把握したい。広域調Q4 被災地の詳細な地形データを取得したい。Q5 地盤災害に関する二次災害リスクを評価したい。	
広域 Q4 被災地の詳細な地形データを取得したい。 Q5 地盤災害に関する二次災害リスクを評価したい。	
域 Q5 地盤災害に関する二次災害リスクを評価したい。	
域調Q5地盤災害に関する二次災害リスクを評価したい。査Q6災害後の法面の変状を効率的に把握したい。	
Q7 急傾斜地等、車両の通行できない場所で地形の被災状況を把握したい。	
Q8 湧水箇所や裸地部の範囲、岩盤の風化状況、細粒土の分布等を把握したい。	
Q9 広域的な地盤構造を推測したい。	
Q10 設計前に資する概略調査としてボーリング調査を補完するための地盤データを取得	引したい。
Q11 ボーリング間の支持層や工学的基盤面の不陸(谷地形)を推定したい。	
Q12 液状化する可能性のある地層の分布を把握したい。	
Q13 地下水や水みちの状況を調査したい。	
Q14 災害後の水源確保のための基礎情報を取得したい。	
Q15 被災した基礎構造(杭·矢板等)の健全性を把握したい。	
日 Q16 地下の空洞や埋設物の位置を把握したい。	
目的的 別Q16 地下の空洞や埋設物の位置を把握したい。別調査Q18 港湾岸壁の空洞化状況を把握したい。	
調 査 Q18 港湾岸壁の空洞化状況を把握したい。	
Q19 災害後の水面下の地形や構造物の周りの洗掘状況を把握したい。	
Q20 車両が進入できない箇所の地盤状況を非破壊で把握したい。	
Q21 斜面崩壊等による対策範囲や危険範囲を把握したい。	
Q22 道路舗装面直下の空洞や緩みを確認したい。	
Q23 被災地における重金属調査を簡易に行いたい。	
Q24 粒度分布を現地で早期に概略把握したい。	
Q25 調査・試験期間を短縮したい。	
簡 Q26 地盤の物性値を簡易に把握したい。	
簡	
盤 Q28 急傾斜地において地質状況を取得したい。	
で Q29 地盤の鉛直方向の液状化危険度を取得したい。	
Q30 地盤の物性値を現地で直ぐに確認したい。	
斜 Q31 人命救助に係る斜面の二次災害の兆候を把握したい。	
斜	
現 Q33 災害後の復旧工事の動態観測をしたい。	
共有 034 災害後の対策方針を関係者間で共有したい。	

	ユースケース				時期				事象		
	技術番号	技術名	アウトプット (成果物の特徴)	発災直後	応急対応	復旧復興	斜面災害	盛土被害のり面・	河川堤 防	液地 状盤 化の	被害物
Q1	現地	にアクセスできないが災害状況を把拠	屋したい。								
	1	干渉SAR を用いた地盤変動解析	衛星データによる地盤変動量や変動方向の把握				0	0	0	0	0
	2	航空機やUAV等によるレーザ計測	空中計測による高密度な三次元点群データの取得				0	0	0		0
	3	LPデータによる地形解析	地形解析等による災害の平面的概況および変状の把 握				0	0	0	0	0
	4	UAV空撮によるSfM画像解析	俯瞰写真による災害の平面的概況および変状の把握				0	0	0		0
	5	マルチスペクトルカメラ	崩壊部の湧水箇所や粒度把握				0	0	0		
	8	空中物理探査	地盤のゆるみ等の推測 (地盤の3次元比抵抗データ)				0	0	0	0	
00	No. 5	Iにおける差分解析では、時間経過や損 5ではUAV搭載型マルチスペクトルカメ	最影季節により植生による影響が生じる可能性があ ラを利用	る							
Q2		「発生前後の状況変化を把握したい。 干渉SAR を用いた地盤変動解析	時系列解析による地盤変動量や変動方向の把握	L			0	0	0	0	0
										0	
		航空機やUAV等によるレーザ計測	災害前後のレーザ計測による差分データの取得				0	0	0	-	0
	3 備考	LPデータによる地形解析 	災害前後の差分解析による土砂移動量等の把握				0	0	0	0	0
Q3		での災害状況を把握したい。									
	1	干渉SARを用いた地盤変動解析	衛星での広域な計測による状況把握				0	0	0	0	0
	2	航空機やUAV等によるレーザ計測	主に航空機での広域な計測による状況把握				0	0	0		0
			は50km×50kmの範囲のデータを取得できる m超で広域データの取得が可能								
Q4	被災	地の詳細な地形データを取得したい。			ı						
	2	航空機やUAV等によるレーザ計測	主にUAVでの詳細な計測による状況把握				0	0	0		0
		UAV空撮によるSfM画像解析	地形平面図(オルソ等高線図化)および地形断面図の 取得				0	0	0		
	備考 No. 2	欄 2のUAVの場合では、対地高度100m程度 [、]	で詳細なデータの取得が可能								
Q5		接災害に関する二次災害リスクを評価し ・									
		LPデータによる地形解析	微地形強調図等の判読による残存する危険地形の把 握				0	0	0	0	0
	備考 LPデ		るレーザ計測」により取得した点群の地表面モデル	レを基	基に解	!析					

時期の凡例

黒線1重=標準適用時期

黒線2重=特に適用性が高い時期

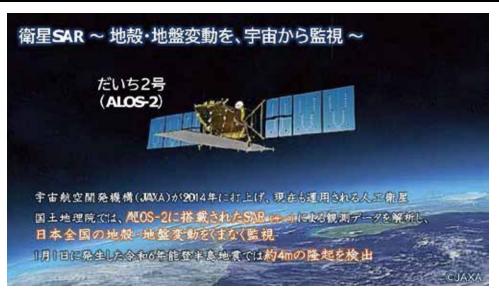
		ユース	スケース	時期					事象		
	技術番号	技術名	アウトプット (成果物の特徴)	発災直後	応急対応	復旧復興	禁面災害	盛土被害・	河川 被害防	液地 状盤 化の	被害物
Q6	災害	書後の法面の変状を効率的に把握したい	١,								
		車載光学カメラを用いた計測	道路を走行しながらの撮影による法面のひび割れ等 の変状把握				0	0			
	備ネ	考欄									
Q7	急作	頃斜地等、車両の通行できない場所では	也形の被災状況を把握したい。								
	2	航空機やUAV等によるレーザ計測	空中計測による高密度三次元点群データの取得				0	0	0	0	
	4	UAV空撮によるSfM画像解析	空中俯瞰視点での斜め・近接写真の撮影、画像解析 によるオルソ(正射)写真の取得				0	0	0		
		ハンドヘルドレーザ計測	手持ち型の機器による構造物等の三次元データの取 得				0	0			0
	備ネ	考欄									
Q8	湧ス	水箇所や裸地部の範囲、岩盤の風化状況	兄、細粒土の分布等を把握したい。								
	5	1,10,111,111,111,111	崩壊部の含水指数および粒度指数の把握				0	0	0		
		考欄 真と対応した含水指数および粒度指数 <i>₫</i>)図面提供が可能								
Q9	広均	載的な地盤構造を推測したい。									
	8	空中物理探査	地盤のゆるみ等の推測 (地盤の3次元比抵抗データ)				0	0	0	0	
		DASによる振動計測	1日で数十kmの地盤のS波速度構造を把握					0	0		0
	備和	考欄									

	ユースケース		スケース	時期					事象		
	技術番号	技術名	アウトプット (成果物の特徴)	発災直後	応急対応	復旧復興	森画災害	盛土被害	被害河川堤防	液状 盤 化の	被害物
Q10	設計	 前に資する概略調査としてボーリン :	ブ調査を補完するための地盤データを取得したい。								
	9	浅層反射法探査	2~3次元反射断面から地質・地下構造を推定					0	0		
	10	微動アレイ探査	2~3次元S波速度構造から地質・地下構造を推定					0	0		
	28	DASによる振動計測	数十kmの二次元断面で連続的なS波速度分布を把握					0	0		
	備考										
Q11	ボー	-リング間の支持層や工学的基盤面の ²	下陸(谷地形)を推定したい。 2~3次元S波速度構造から支持層や基盤面の不陸推	1							
	10	微動アレイ探査	定					0			
	28	DASによる振動計測	既設光ファイバー網を利用してS波速度300m/s以上 の層を連続的に把握					0			
	備考										
Q12	液划	代化する可能性のある地層の分布を把持			1						
	10	微動アレイ探査	2〜3次元S波速度(低速度)構造から液状化可能性把握							0	
		電気探査	比抵抗データによる液状化対象層の把握				0	0	0	0	
	備考	横									
Q13	地下	水や水みちの状況を調査したい。									
	11	電気探査	比抵抗データによる帯水層・不透水層の把握				0	0	0	0	
	15	EM探査	地下導電率分布により地下水を把握				0	0	0	0	
	備考	· 欄									
Q14	災害	「後の水源確保のための基礎情報を取 行	导したい。						•		
	11	電気探査	比抵抗データによる帯水層・不透水層の把握				0	0			
	24	地下水の応急利用調査	既設井戸の適正揚水量、地下水等の簡易水質の把握								
	備考 No. 2		・ 応急利用にあたり、水量や利用目的に応じた水質の	の適る	らにつ	いて	評価				

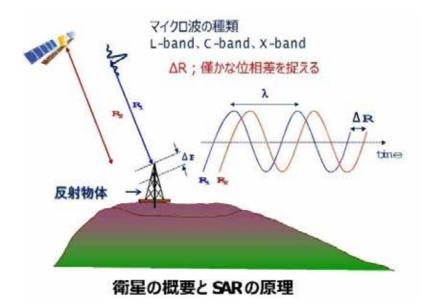
応急対応	斜面災害	盛り面・	河川堤防	液地 状盤 化の	被害物
					173
					0
•					
	_				
		0	0		
		0	0		0
•	•				
					0
	0		0		0

	ユースケース				時期				事象		
	技術番号	技術名	アウトプット (成果物の特徴)	発災直後	応急対応	復旧復興	斜面災害	盛土被害・	被害防	液地 状盤 化の	被害物
Q20	車両	īが進入できない箇所の地盤状況を非 碩	······································								
		EM探査	小型軽量装置(1~2人で探査可能)による地盤構造 の推測(地下導電率分布)				0	0	0	0	
	備考										
Q21		i崩壊等による対策範囲や危険範囲を打	巴握したい。 		1	- 1		ı		-	
		EM探査	地下導電率分布に基づく集水域や断層破砕帯の評価				0	0		0	
	備考	横									
Q22	道路	S舗装面直下の空洞や緩みを確認したい ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	١,								
	12	地中レーダ	反射波による地盤と空洞・埋設物境界の把握					0			
	17	簡易動的コーン貫入試験	Nd値や自沈状況から空洞や緩み領域を把握					0		0	
	18	ポータブル動的コーン貫入試験	qd値や自沈状況から空洞や緩み範囲を把握					0		0	
		SH型貫入試験	Nd/drop値や自沈状況から空洞や緩み範囲を把握					0		0	
	擊回	直とは、先端コーンを地中に10cm貫入さ]数。SH型貫入試験ではNd/drop値とし	をせるのに必要な打撃回数。簡易動的コーン貫入試 、質量3kgと5kgのハンマーを使い分け、3kgハンマ 认量の関係から換算されたコーン貫入抵抗値							よる	ŧΤ
Q23	被災	そ地における重金属調査を簡易に行いする。									
		携帯型蛍光X線分析	携行型の分析装置で室内・原位置にて重金属含有量 を推定				0		0		
	備考										
Q24	粒度	E分布を現地で早期に概略把握したい。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・									
		AI画像解析を用いた簡易粒度判定	土試料を撮影することで簡易な粒度分布を推定				0	0	0	0	
	備考	F 桶									

		ュース	スケース		時期		<u> </u>		事家		
	技術番号	技術名	アウトプット (成果物の特徴)	発災直後	応急対応	復旧復興	斜面災害	盛り 土被害・	被害防	液地 状盤 化の	被害物
Q25	調査	を・試験期間を短縮したい。									
	16	土層強度検査棒	現地踏査に携行して調査可能				0	0			
	17	簡易動的コーン貫入試験	砂や粘土なら半日で5m程度を調査可能				0	0	0	0	
	18	ポータブル動的コーン貫入試験	砂・粘土対象なら、1,2時間で5m程度調査可能				0	0	0	0	
	19	SH型貫入試験	砂・粘土対象なら、1,2時間で5m程度調査可能				0	0	0	0	
	20	三成分コーン貫入試験(CPT)	自走式の試験機により、作業工程の短縮が可能 (設置・撤去各0.5日、掘削5~15m/日)						0	0	
	21	ピエゾドライブコーン(PDC)	人力で移動可能なコンパクトな貫入装置でNd値(N 値相当値)を短期間に推定					0	0	0	
	備考	考 欄	,								
Q26	地盘	壁の物性値を簡易に把握したい。									
	17	簡易動的コーン貫入試験	人肩運搬可能な資機材でNd値や換算N値を推定				0	0	0	0	
	19	SH型貫入試験	人肩運搬可能な資機材でNd/drop値や換算N値を推定				0	0	0	0	
	20	三成分コーン貫入試験(CPT)	自走式掘削機にて、換算N値、非排水せん断強さ、 せん断抵抗角、液状化抵抗を連続的に推定						0	0	
		ピエゾドライブコーン(PDC)	打撃貫入時の残留間隙水圧から細粒分含有率Fc、貫入量からNd値(N値相当値)を推定					0	0	0	
	「推	号欄 奐算N値」はCPT諸量からの経験式による 隆種別によって相関は変動するため、他	も推定値であり、標準貫入試験(SPT)で得られるN む調査との整合確認を推奨	値と	は直持	妾同−	-では	はない	'。適	用条件	件・
Q27	狭隘	盆地において地質状況を取得したい。									
	16	土層強度検査棒	手持ち運搬可能な資機材で地盤の硬軟(換算N値 等)を把握				0	0			
	17	簡易動的コーン貫入試験	2人程度で運搬及び調査可能でNd値や換算N値を得られる				0	0	0	0	
	18	ポータブル動的コーン貫入試験	1人で運搬可能で、qd値を得られる				0	0	0	0	
	19	SH型貫入試験	2人で運搬・試験実施可能で、Nd/drop値や換算N値 が得られる				0	0	0	0	
		ピエゾドライブコーン(PDC)	人力で移動可能なコンパクトな貫入装置でNd値(N値相当値)を1打撃ごとに連続的に推定					0	0	0	
	備者	考欄									
Q28	急作	頃斜地において地質状況を取得したい。									
	16	土層強度検査棒	手持ち運搬可能な資機材で地盤の硬軟(換算N値 等)を把握				0	0			
	17	簡易動的コーン貫入試験	2人程度で運搬及び調査可能でNd値や換算N値を得られる				0	0	0	0	
	18	ポータブル動的コーン貫入試験	1人で運搬可能で、qd値を得られる				0	0	0	0	
		SH型貫入試験	2人で運搬・試験実施可能で、Nd/drop値や換算N値 が得られる				0	0	0	0	
	備者	考欄									
Q29	地盘	壁の鉛直方向の液状化危険度を取得した	とい。								
		ピエゾドライブコーン(PDC)	液状化強度(R _L)を1打撃ごとに連続的に推定					0	0	0	
	備者	考欄									
Q30	地盘	盤の物性値を現地で直ぐに確認したい。									
	17	簡易動的コーン貫入試験	現地でNd値や換算N値を把握可能				0	0	0	0	
		SH型貫入試験	現地でNd/drop値や換算N値を把握可能				0	0	0	0	
	備者	考欄									

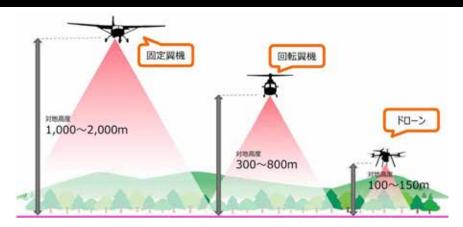

	ユースケース				時期		事象				
	技術 アウトプット (成果物の特徴)				応急対応	復旧復興	斜面災害	盛土被害・	河川堤防	液地 状盤 化の	横造物
Q31	人命	。 救助に係る斜面の二次災害の兆候を	巴握したい。		•	•					
	25	傾斜計	土中の傾斜角度変化による崩壊の兆候の把握				0	0			
	26	GNSS	地盤の移動量による崩壊の兆候の把握				0	0			
032	備考 応急	^{指欄} な対応も含めた斜面の二次災害の兆候。	を把握したい。								
402	$\overline{}$	傾斜計	土中の傾斜角度変化による崩壊の兆候の把握				0	0			
		GNSS	地盤の移動量による崩壊の兆候の把握				0	0			
	27	土壌水分計	土中の体積含水率による崩壊の兆候の把握				0	0	0		
	29	雨量計	局所的な実観測雨量の把握				0	0	0		
033	備考	^F 様の復旧工事の動態観測をしたい。									
YSS		ではいる。 「仮名計	復旧工事中の傾斜角変化量をリアルタイムで把握	l		L	0	0			0
		1777.77									
	26 備孝	GNSS	復旧工事中の斜面の変状量をリアルタイムで把握				0	0			0
		· 作利									
Q34	災害	『後の対策方針を関係者間で共有した し	۸,								
		地盤の3次元モデル	不可視の地中を3次元で可視化				0	0	0	0	0
	備考	· · · · · · · · · · · · · · · · · · ·									

【要素技術編】

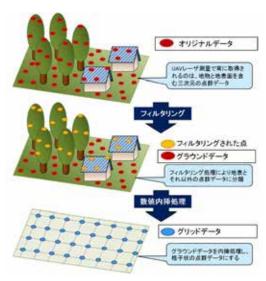

ユースケース編で紹介した災害時に役立つ30の地質調査技術を解説します。

手法 区分		調査手法	頁	調査目的
	1 =	干渉 SAR を用いた地盤変動解析	11	災害によって変状した地形 状況を迅速に把握する
	2 舟	抗空機や UAV 等によるレーザ計測	13	仏沈を迅速に指催する
セン	3 L	Pデータによる地形解析	15	
センシング	4 U	IAV 空撮による SfM 画像解析	17	
ググ	5 -	マルチスペクトルカメラ	20	
	6 I	車載光学カメラを用いた計測	21	
	7 /	ヽ ンドヘルドレーザ計測	23	
	8 2	空中物理探査	25	災害が発生した地域の地質、 地盤の状況を非破壊で迅速
	9 }	线層反射法探査	27	に把握する
	10 徘	微動アレイ探査	29	
探查	11 🖺	電気探査	31	
査	12 ±	也中レーダ	33	
	13 復	衝擊弾性波探査	35	
	14 달	音響による水面下の地形調査	37	
	15 E	M探査	39	
	16 =	上層強度検査棒	41	災害が発生した現場の限ら れた作業スペースで迅速に
114-	17 1	簡易動的コーン貫入試験	43	物性値を把握する
地 盤 評 価	18 7	ポータブル動的コーン貫入試験	45	
評価	19 S	H 型貫入試験	47	
limi	20 E	三成分コーン貫入試験(CPT)	49	
	21 t	ピエゾドライブコーン(PDC)	51	
	22 技	隽带型蛍光 X 線分析	53	災害が発生して分析に急を 要する際に、室内試験の代替
分 析	23 A	【画像解析を用いた簡易粒度判定	55	として各主成分などを把握
171	24 ±	也下水の応急利用調査	57	する
-	25 ft	頂斜計(地表面) 	59	災害が発生して不安定な地
=	26 G	INSS	61	盤の変動状況をタイムリー に把握し、二次災害を防止す
タリ	27 =	上壌水分計	63	る
モニタリング	28 D	AS による振動計測	65	
	29 ট	雨量計	67	
モデリング	30 ±	也盤の3次元モデル	69	災害時の混乱した状況で取 得したデータの共有を図る

基本事項	
No.	1
調査手法名	干渉 SAR を用いた地盤変動解析
目的	災害による地盤変動を把握する
活用時期	発災直後、応急対応
技術の特徴	高精度かつ広範囲に観測する。
	・だいち 2 号の場合、50km×50km の範囲を一度に観測できる。
	・広範囲に解析できるため、地盤変動の見落しを軽減できる。
	災害による地盤変動を把握する。
	・人工衛星による合成開口レーダ(SAR)の画像を使用する。
	・2 時期のデータを用いて、位相差から相対的な変位量を算出する。
	・概ね数 cm 程度の誤差で、変位を検出できる。
得られる	広範囲の地盤変動量や変動の方向
データ	
活用事例	・広範囲の地盤変動量の把握
	能登半島地震の際の地殻変動について、観測データから解析を行った。
	#東西方向 ***********************************
	(出典:国土地理院) ・変動モニタリングの適応例
	◇災害危険個所の監視
	◇道路、鉄道、堤防等の施設管理や変状・沈下の監視
	◇工事や地下水変動の影響の監視 など
	(出典:地質リスク調査検討業務の手引き)

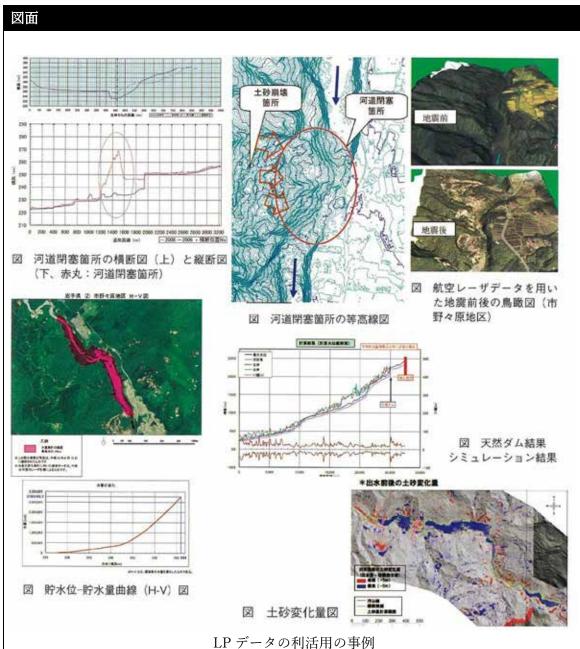

衛星 SAR~地殻・地盤変動を、宇宙から監視~(出典:国土地理院)

衛星 SAR の概要と原理(出典:地質リスク調査検討業務の手引き)


- ✓ 波長帯 (X:約3cm・C:約6cm・L:約24cm) により、透過性や干渉 のしやすさが異なるため、目的に応じた波長帯を設定する。
- ✓ なお、植生を含む広域の地盤沈下等では、波長帯の長い L バンド (例: だいち 2 号 ALOS-2) の SAR データを用いる例が多い。
- ✓ 積算は公表単価がないことから、見積り対応とする。

基本事項	
No.	2
調査手法名	航空機や UAV 等によるレーザ計測
目的	災害による地物及び地形形状を把握する
活用時期	発災直後、応急対応
技術の特徴	三次元点群データを作成する。 ・レーザスキャナからレーザ光を照射し、地形や地物などを計測する。 ・従来の空中写真に比べて、樹木下などの地形を精度良く計測できる。 ・河川などの水域も計測できる(航空レーザ測深測量という)。 航空機や UAV などによる計測を行う。 ・航空機では飛行速度が速く、対地高度 1000~2000m を目安とする。 広範囲の地域を効率よく計測する。 ・UAV では飛行速度が遅く、対地高度 100~150mを目安とする。 局所的な地域を迅速に計測する。 高密度な地形や地物に関する三次元点群データ
データ 活用事例	・地物及び地形の把握 樹木下や植生下までも高精度に地物及び地形データを取得する。 写真点群 フーザ点群 フーザ点群 下層植生下の地盤取得状況 (抽出標±0.25m) ドローンレーザによる植生下の地盤取得の状況 (出典: UAV-LiDAR と UAV 写真測量の精度比較及び統合利用の検討、日本写真測量学会平成 29 年度年次学術講演会予稿集 p47~50)

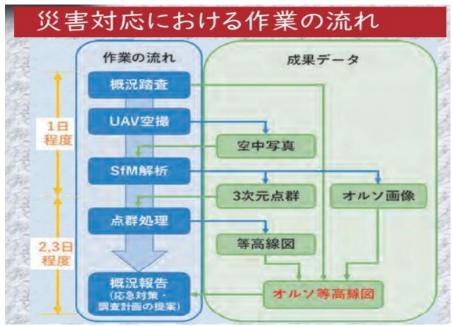
レーザ測量概念図


(出典:日本測量協会 HP より)

オリジナルデータ、グラウンドデータ、グリッドデータの概念図 (出典: UAV 搭載型レーザスキャナを用いた公共測量マニュアル(案) 平成30年3月 国土地理院より)

- ✓ 計測計画として、対地高度・対地速度・コース間の重複度や計測点の間 隔等を綿密に計画する。
- ✓ 現地計測は、天候等に左右される。
- ✓ 積算は、計測方法による標準作業量(航空レーザ: 100km²以上、UAV: 0.2km²以下)に応じて、「設計業務等標準積算基準書(測量業務積算基準)」(国土交通省発行)を参照(第2章10~11節)
- ✓ 但し、上記の作業量に当てはまらない場合は、見積り対応とする。

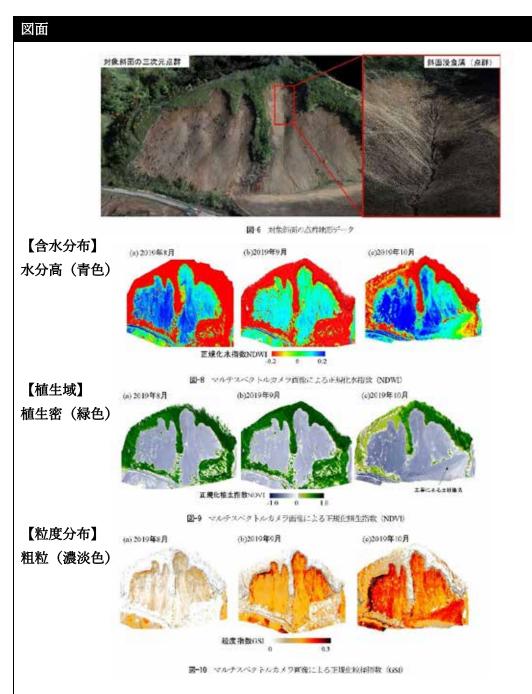
基本事項	
No.	3
調査手法名	LP データによる地形解析
目的	災害により被災した箇所の抽出や評価
活用時期	発災直後、応急対応
技術の特徴	詳細な地形判読ができる。
	・高密度な地形情報に基づき、各種の地形解析図に加工できる。
	・微地形を抽出して、危険地形や崩壊危険度などを評価できる。
	災害による地盤変動を把握する。
	・2 時期のデータを用いて、地形変位を定量評価することや土砂の移動量
	を算定することもできる。
得られる	各種の地形解析図(等高線図、傾斜量図等)
データ	各種の微地形強調図(CS 立体図、ウェーブレット解析図等)
活用事例	・地形解析図等による危険地形の抽出・評価
	地形解析図を用いた判読による危険地形の抽出を行う。
	(出典:2021 年度土木学会中国支部研究発表会 小室ほか)
	・移動土塊の変動量の把握
	2時期データを用いて、移動土塊の変動量や移動方向を把握する。
	(保護サーラン・地震等の研究) (保護サーラン・地震等の研究) (保護サーラン・地震等の研究) (保護等の研究) (保護等のアーラを収集) (保護等のアーラを定定を定定を定定を定定を定定を定定を定定を定定を定定を定定を定定を定定を定定
	能登半島地震における地形変動 量の把握 (出典:国際航業 HP より)



(出典:航空レーザ測量による災害対策事例集(日本測量調査技術協会編))

- 地形解析図を組合せることで、判読精度を高めることができる。
- 活用目的に応じて適切な種類の図を選択できる。 例えば、斜面は傾斜量図、微細な地形の痕跡は微地形強調図が適する。
- ✓ 現地踏査と併せて、地形解析の評価を行うことが望ましい。
- ✓ 積算は公表単価がないことから、見積り対応とする。

基本事項	
No.	4
調査手法名	UAV 空撮による SfM 画像解析
目的	災害によって変状した地形状況を把握する
活用時期	発災直後、応急対応
技術の特徴	災害発生時の初動対応においては、現地の状況や変化をリアルタイムに 把握する必要がある。しかしながら、2次災害の可能性があり現場に近づ けない、災害範囲が広く全体像の把握が困難、既存地形図から地形が大き く変化し現況地形の正確な把握が困難などの問題が生じる場合が多い。 これに対し、UAV 機体(ドローン)を使用することで、簡易で迅速かつ安 全な空撮作業が可能となる。さらに取得した画像データの SfM 解析によ り現況オルソ画像・等高線図を短時間で作成でき、初動調査に必要な基礎 資料・情報を迅速かつ効率的に得ることが可能となる。 さらにそのデータは3次元モデルを利用した任意位置での断面図作成や 土工シミュレーションへの活用展開など、オルソ等高線図から得られる情
	報を組み合わせることで付加価値のある解析結果を得ることが可能とな z
得られる	る。 ●斜め(鳥瞰)画像写真・動画
データ	●SfM 画像解析によるオルソ画像写真、簡易現況地形図(オルソ等高図)、 3D モデルの作成 →オルソ等高線図からは任意方向の地形断面図作成が可能
活用事例	●自然斜面災害(地すべり、がけ崩れ、土石流等)●大規模のり面災害(盛土・切土斜面の崩壊)●河川堤防被害



- ✔ 撮影時は気象状況に左右される
- ✓ 法規制(航空法、条例)に準拠した飛行計画が必要
- ✓ 植生(とくに樹木)が密な場合、正確な地形表現ができないことがある
- ✔ 積算は、公表単価なし、見積対応

基本事項	
No.	5
調査手法名	マルチスペクトルカメラ
目的	災害で発生した土砂崩れや津波堆積物等の分布把握
活用時期	発災直後、応急対応、復旧復興
技術の特徴	マルチスペクトルカメラは、通常カメラで捉えることができる RGB の
	3波長帯域に加え、以下の特徴を持つ。
	① 近赤外線域(700-1000nm や、水の吸水特性を示す 1450nm、スメク
	タイトの吸水特性を示す 1420~2350nm 等)の撮影が可能。
	② 複数(5~10 バンド程度)の狭い波長帯域の反射強度の計測が可能。
	農業分野等では、上記特徴を活かし、NDVI(正規化植生指数:赤色光
	と近赤外光の反射率比)を用いて、稲の生育状況等の調査に使用されてき
	た。近年は、UAV への搭載可能なマルチスペクトルカメラが、普及し始
	めており、その汎用性が建設や地質調査の分野にも拡大している。
	土砂災害現場等では、以下の調査に利用されている。
	・ 表層崩壊範囲の特定
	・ 崩壊地斜面等における表層土壌の含水状態や粒径分布の把握
	・露出岩盤の岩種特定
	・ 露出岩盤の風化区分(酸化鉄の抽出)
	・ 植生の分布や生育状況に基づく盛土や地すべり地の抽出
	・ 粘土鉱物の分布把握等
	・ 災害前後の差分解析で崩壊土砂量を算出
	マルチスペクトルカメラから得られる NDWI(正規化水指数)や GSI
	(粒度指数)は、上記②の把握が可能であり、災害時等、遠隔から状況把
	握する際には、災害発生箇所の特徴を数値で把握できる利点がある。
得られる	RGB、Red-Edge、NIR 等、5~10 バンド毎の反射強度
データ	
活用事例	平成 30 年北海道胆振東部地震:表層崩壊斜面において、経時的なマルチ
	スペクトルデータを取得・解析し、地震後の余震や降雨等によって、山際
	から新たに供給されている土砂の経時変化を把握している。本結果による
	と、中央部のガリーが形成された斜面では土砂の供給量が緩やかに増加し
	ているのに対し、落ち残りと推定される左上の斜面の縁部では、急速に土
	砂が供給・裸地の拡大が認められる(次頁図-10 参照:西山ほか、
	2021)。


出典:西山ほか (2021)、UAV を用いた高精度計測による厚真川流域崩壊地における土砂流出特性の把握、 河川技術論文集、第 27 巻、2021 年 6 月

- ✓ 雨天時の空撮は困難 (UAV の飛行基準に準拠)
- ✓ 撮影条件としては、太陽が真上に位置する昼の12時が最適
- ✓ 晴天時は、全体的に反射強度が上昇する傾向にあるため、ハレーション に留意する必要がある
- ✓ 積算は公表単価がないため、見積対応とする

No. 6	;
調査手法名	車載光学カメラを用いた計測
目的	のり面の被災状況を把握する
活用時期	芯急対応、復旧復興
技術の特徴	普通自動車に複数のカラーラインカメラと3次元センサを搭載した撮影車
同	両で、のり面に面した道路を走行することで、のり面全体画像および断面図
7.	を作成する。全景画像と3次元データを基に、現地踏査に必要な情報(のり
1	面角度や高さ等)及び、変状箇所に関する情報(変状の位置や大きさ)を自
重	動抽出もしくは手動で抽出し、所定のフォーマットで出力する。また、同じ
0.	のり面に対し全景画像と3次元データを繰り返し撮影することで、経時変化
7.	をとらえることが出来る。
得られる	全体画像、カラー3D 点群マップ、断面図、変状(ひび割れ等)の抽出結果
データ	
活用事例	・のり面の撮影結果によるひび割れの抽出結果、
7	カラー点群マップ、断面図の作成例
	ー度の走行でのり面全体を撮影(例:幅100m)
	(例:高さ15m)
	ピンクの線は、 AIによって抽出されたひび割れ 例 (撮影画像) (AIによるひび割れ抽出)
	のり面のひび割れ抽出結果の例
	点群データ※画像と位置情報紐づき断面図カラー3D点群
	断面図、カラー3D 点群の例

図面 カラーラインカメラ5台 走行しながら早く大量に のり面を計測 レーザースキャナ カラーラインカメラ5台 RTK-GNSS **★**×5台 のり面 IMU (慣性 走行しながら連続シャッター 短冊状の写真を 大量撮影し、 幅広の全体画像と 点群を作る 写真画像 点群データ データ取得 取得

のり面の全体画像の例

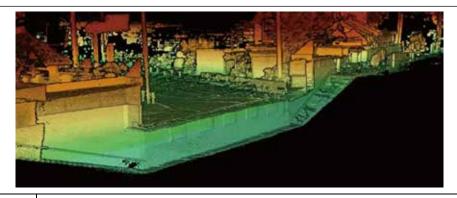
- ✓レーダーが地表に照射できない、人が移動できないほど植生が繁茂している 場合は対象地形のデータを取得できないことがある。
- ✓ 交通規制は原則必要ないが、照度条件等により低速での測定となるため、 片側交互規制が必要な場合がある。
- ✓ 計測条件は日中であり、極端に暗い環境でないことであり、雨天不可。
- ✓積算は公表単価がないため、見積対応とする。

基本事項	
No.	7
調査手法名	ハンドヘルドレーザ計測
目的	災害によって変状した地形状況を把握する
活用時期	発災直後、応急対応
技術の特徴	ハンドヘルドレーザ計測は、手持ち型の軽量機器を使い、対象物の距離や 三次元形状を非接触かつ高精度で計測可能な技術。レーザ光を対象物へ照 射し、反射した光の時間や位相差から瞬時に距離や形状データを取得す る。小型かつ可搬性に優れるため、狭い場所や高所、危険箇所での作業に も柔軟に対応できる。従来の手作業や大型機器を使わず、現場で迅速に計 測でき、3D モデル作成や現状記録、設計用の基礎データ取得など幅広い 用途に活用されている。
得られる	三次元点群データ(3D Point Cloud)
データ	RGB カラー情報(カラーポイント)
	三角メッシュデータ(Surface Mesh)
活用事例	① 橋梁・歩道橋の被災状況調査(熊本地震 2016 年) 熊本地震で損傷した橋梁や歩道橋のひび割れ、変形、ずれ、落橋などを 詳細に記録するため、ハンドヘルド 3D スキャナーが投入された。現場の 通行止めや余震で危険な中、短時間で高精度な点群取得ができ、損傷部位 の寸法・変化量の正確な把握、変状解析に利用され、結果として「紙の記 録や写真のみでは把握しきれない立体的な状況」が復元でき、復旧設計・ 保全計画に活用された。 ② 急傾斜地・崩壊現場の緊急測量(2018 年西日本豪雨) 西日本豪雨で土石流、斜面崩壊が多発した広島県などで、土砂災害の現 場に迅速に持ち込まれたハンドヘルド 3D スキャナーが活躍。 階段・狭い山道・斜面など、従来の三脚型では設置困難な場面でも、測量 作業者が歩きながら計測でき、崩壊土砂の量推定や侵入経路、周辺家屋と の位置関係の把握に即時役立った。計測結果は自治体や復旧工事関係者と 速やかに共有でき、復旧工法選定・被害報告・設計変更に反映。

【使用機器 代表例】

GeoSLAM社製 Zeb-Horizon

- レーザ発射部分が回転するため、頭上の構造物も鮮明に取得可能
- 16個のレーザセンサーを内蔵・30万点/秒の高密度スキャン
- 最大到達距離100m、測距精度 約3cm
- XYZの座標値に加え、反射強度値も取得



KAARTA社製 STENCIL2

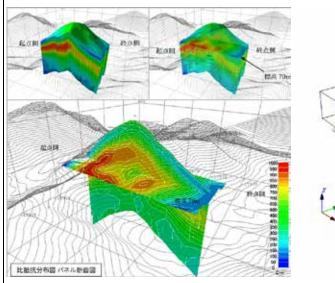
- カメラとレーザの併用SLAMにより、特徴点の少ない場所でもマッチングのミスが少ない
- リアルタイムに点群を取得可能
- 16個のレーザセンサーを内蔵・30万点/秒の高密度スキャン
- 最大到達距離約100m、測距精度約3cm
- XYZの座標値に加え、反射強度値も取得

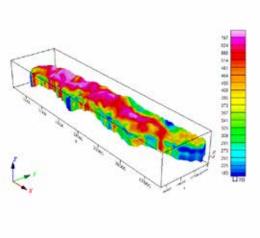
SLAM(Simultaneous Localization and Mapping とは

自己位置推定と環境地図作成の同時実行)とは、レーザ点群の特徴点をマッチングして、自己位置と点群を同時に推定する技術。ロボット工学の世界で発展した技術で、お掃除ロボットや自動運転で使われている。

- ✓ 手持ち式のため据置き型(固定型)スキャナーよりも精度がやや劣る場合あり
- ✓ 計測者の歩行速度や手ぶれ、姿勢の安定性などが精度に影響
- ✓ 積算は、対象面積・構造物数によって変動するため、適宜の問合せを要する。

基本事項	
No.	8
調査手法名	空中物理探査 (空中電磁探査等)
目的	災害によって変状した地盤内の比抵抗(電気の流れにくさ)等を把握す
	る。
活用時期	発災直後, 応急対応
技術の特徴	空中電磁探査は、ヘリコプターやドローン等を用いて空中から電磁探査を 行うことである。地盤内の比抵抗を把握し、解析することで地質構造を推 定する方法であり、岩盤や土と水で電気的性質の大きな違いから地下水の 流れる経路を推定でき、粘土鉱物量・体積含水率等の推定から脆弱箇所の 特定が可能である。探査深度が地表から深度 50m~1,000m 程度まで把握
	できる。空中を飛行しながら探査を行うため、非常に広域なエリアでの調査も効率的に行うことができる。また、人・重機の立入りが困難な場所でも調査が適用可能である。今後 BIM/CIM への適用も可能な手法である。
得られる データ	地盤内の3次元比抵抗データ等
活用事例	2016 年熊本地震の斜面崩壊:結果から、比抵抗変化量が正の値になる深度区間数が多いほど、すなわち、堅硬な地盤から軟弱な地盤に遷移する区間が多いほど、斜面崩壊の発生する確率が高くなることがわかった。 図 比抵抗 (深度 0m) の分布 図 比抵抗の調査対象範囲と熊本地震の崩壊地 (出典:一般財団法人土木研究センター 土木技術資料 61-12(2019)
	空中電磁探査を活用した地震時斜面崩壊発生場の分析より)



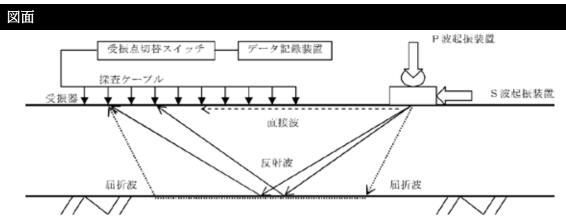

ドローン空中電磁探査(D-GREATEM)

ヘリコプター空中電磁探査 (P-THEM)

探査事例

(出典:応用地質 HP より)

ドローン探査結果例


有人ヘリコプター探査結果例

解析結果事例

(出典:応用地質 HP より)

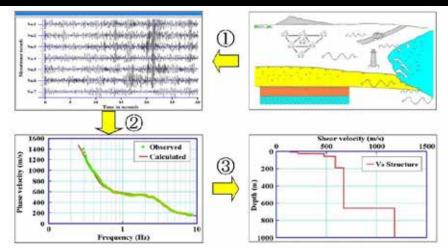
- / 暴風時、大雨時には観測ができない
- ✔ 積算は公表単価がないため、見積もり対応とする

基本事項	
No.	9
調査手法名	浅層反射法探査
目的	浅層の地下構造の形状把握、地層の連続性の確認、
	活断層の位置・形状把握、規模の大きな空洞位置の推定
活用時期	応急対応、復旧復興
技術の特徴	反射法地震探査は、地表で発生させた波が、地中の反射面(主に、速度や密度が変化する地層境界面)で反射して帰ってくるさまをとらえ、その到達時間や速度等の情報を用いて地下構造を探査する手法である。反射面を2次元、3次元で可視化することができ、地下構造の形状、地層の連続性、活断層の位置・形状を把握できる。元来、地下数1000mを対象とする石油・天然ガスなど資源探査で発展を遂げてきた。この技術を地下数mから100m程度の浅層部を対象とする地盤環境関連調査や地震防災関連調査(特に活断層調査)などを目的に改良したものが浅層反射法である。探査深度に応じて、波動(P波・S波)、受振点・起振点間隔、展開長等を選定する。
得られる データ	2~3 次元反射断面図
活用事例	桑名断層を横断する測線で実施した S 波反射法地震探査の事例。深度 80m までの反射面(水平層、不整合面等)が確認できる。また、A~F の小規模断層帯により数十 m の撓曲変形を受けた反射面が複数確認できた。 た: 反射断面図 右:解釈断面図(青線:水平層、赤線:不整合面、A~F:断層帯) S 波反射法地震探査深度断面図(出典: 稲崎ほか, 2007 より)

浅層反射法地震探査測定概念図(出典:新版物理探査適用の手引き,2008より)

左:P波ランドストリーマ、右:S波ランドストリーマ

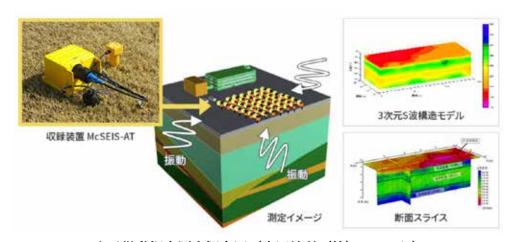
牽引式測定器(ランドストリーマ)の例(出典:新版物理探査適用の手引き,2008より)


受振器(ジオフォン)

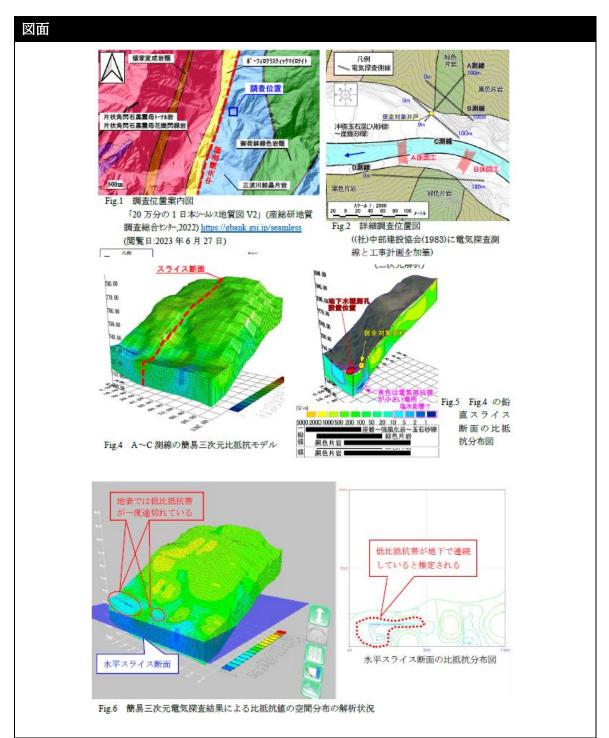
独立型測定器の例

(出典:地球科学総合研究所 HP より) (出典:地球科学総合研究所 HP より)

- ✓ 構造のみで地質は分からないため、地表踏査やボーリング調査を併用す ることが望まれる。
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行)を参照(頁 IV-18)


基本事項	
No.	10
調査手法名	微動アレイ探査
目的	工学的基盤面の推定、強震動予測、液状化地盤分布の推定
活用時期	応急対応、復旧復興
技術の特徴	微動アレイ探査は波浪等の自然現象や交通振動等の人間活動により引き起こ
	される地面の微小な揺れを地表に群設置した地震計で同時観測し、地盤のS
	波構造を推定する手法である。深度数 10mから数 1000mの大深度地下構造
	調査まで適用できる。
	測定は多数の受振器を配置するのみで起振する必要がなく、住宅密集地など
	の都市域でも比較的簡便に地盤構造の把握が可能である。
	近年は新たな技術として 3 次元微動探査の活用実績が拡大している。
得られる	1~3 次元 S 波速度構造
データ	1~3 次儿 3 次述及稱坦
活用事例	3 次元微動探査により液状化分布範囲を推定した事例。S 波速度 200m/s の
	等値面深度分布が過去の砂利採掘跡の範囲や液状化被害(噴砂)の範囲と一
	致している。砂利採掘地を埋め戻したことによる物性の違いが液状化被害を
	発生させたと推定できる。
	ピンタハッチは似宝写真中間による 「福祉を参われ(情本はか、2015)
	左:過去の砂利採掘跡の範囲、右:S 波速度 200m/s の等値面深度分布図
	採掘跡地の分布(左)とS波速度の等値面深度分布図
	(出典:小西ほか, 2021 より)

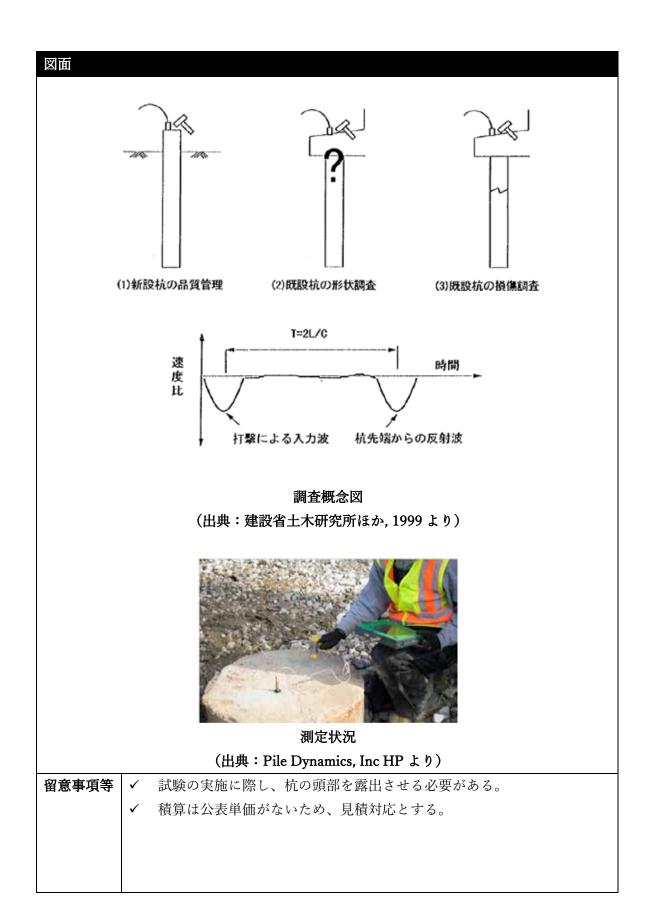
微動アレイ探査の主な流れ(出典:新版物理探査適用の手引き,2008より)


地震計設定例(出典:新版物理探査適用の手引き,2008より)

3次元微動探査測定概念図(応用地質(株)HPより)

- ✓ 現地の振動状況(振動源の有無)は測定しないと分からないため、場合 によっては予備調査を行い、適用性を確認する必要がある。
- ✓ 岩盤では表面波が卓越しないため適用が難しい。
- ✓ 表面波探査を併用することで、浅部の情報を補うことが出来る。

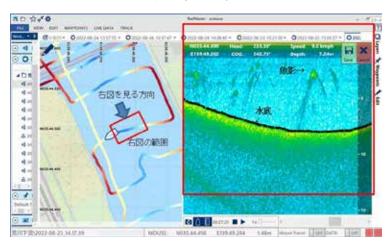
基本事項	
No.	11
調査手法名	電気探査
目的	地滑り、斜面崩壊の原因の一つの地下水分布やすべり面の粘性土、風化岩 の分布の把握
活用時期	応急対応,復旧復興
技術の特徴	電気探査は、地表面に電極を多数設置し、電極の組み合わせを変化しながら測定をおこなう。電極を直線的に配置し、比抵抗の2次元分布を取得する。また、異なる方向の電極配置を組み合わせて取得したデータに対して3次元解析をすることで、地下の3次元比抵抗分布が得られる。3次元比抵抗分布の取得方法として複数の2次元データに3次元解析を適用し、3次元の測定と同等の解析結果が得られる省力型3次元電気探査法や、送信・受信が独立したノード型の電気探査装置を用いて容易に3次元計測する方法が提案されている。 (物理探査ハンドブック第三版 第5編 電気探査より抜粋)
得られる データ	2次元比抵抗構造/3次元比抵抗構造 粘土鉱物や地下水などのみずみちの空間的分布の推定、それから地形・地 質構造的要因の解釈の資料となる。
活用事例	物理探査学会 創立 75 周年記念シンポジウム 第 149 回(2023 年度秋季)学 術講演会 講演論文集より セッション 環境 「簡易型三次元電気探査を用いた地下水調査事例 (谷岡伸也ほか)」より ○既設井戸近傍で予定されている床固工の施工に先立ち,簡易型(省力型)三次元電気探査を用いて水理構造の推定を行い,工事影響の可能性を検討した事例 調査場所は、温泉水(塩水)が湧出する地域であり、工事による水質変化や水位低下の懸念から、電気探査、水質成分調査を実施した。簡易型 3 次元電気探査の結果、塩水湧出部の分布を推定できた。



- ✓ 得られた比抵抗構造が地下水等の含水率によるものか、鉱物等の構成に よるものかの解釈は他の地質情報を考慮して行う必要がある。
- ✓ 解析規模・精度と作業効率・計算コストのバランスを考慮し、2次元あるいは3次元の探査を選択する必要がある。
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行)を参照(頁 IV-23)

基本事項			
No.	12		
調査手法名	地中レーダ		
目的	災害によって変状した地下状況を把握する		
活用時期	応急対応,復旧復興		
技術の特徴	地中レーダは、電磁波(電波)の地下物体からの反射を利用した地下計測		
	法であり、地下構造を高速、高精度に可視化できる手法である。現場では		
	レーダ装置を移動させながら計測することで、目標物の形状を捉えること		
	ができる。通常、50MHz~4.5GHz 程度の周波数が利用されている。使用		
	する周波数帯によるが、道路では探査深度 1.5~2m程度であり、地盤湿潤		
	度や地層間の反射の強さにより探査可能深度は変化する。地中レーダ画像		
	を AI 技術で解析することで、作業効率を向上させる試みも行われつつあ		
	る。また、複数の測線データをソフト上で組み合せたり、あるいは複数の		
	送受信アンテナからなる3次元地中レーダアンテナを用いれば3次元表示		
	ができ、BIM/CIM モデルへの展開も期待できる。		
得られる	地中レーダデータ (縦断面図、タイムスライス平面図)		
データ			
活用事例	2018 年北海道胆振東部地震:震度が大きな地域を中心に地震発生前、地		
	震発生直後、地震1年後で路面下空洞調査を実施した。その結果、地震直		
	後は新規空洞を 44 箇所検知し、地震発生前に検知した箇所のうち 5 箇所		
	で空洞の拡大、上昇がみられ計 49 箇所で変化がみられた。		
	(気象庁) 並與維持動(素計)		
	70 計 69箇所		
	60 計 58箇所 新規空間,11		
	を企業 31% 拡大、上院。7		
	40		
	田振東部地震の推計震度分布図		
	100% 14N 1十 22箇所		
	875 20 文化年		
	50% 45% 10 新規型高,22 抵大、上常,5 建物流,18 50%		
	40% 15% 0 地震前 地震直後 地震1年後		
	20% 42N 30% H27.28 H30 R01		
	地震発生区間における地震前から		
	■		
	(出典:平成 30 年北海道胆振東部地震後の路面下空洞の発生傾向 2019 年		
	度 北海道開発技術研究発表会論文、北海道開発局より)		

基本事項			
No.	13		
調査手法名	衝撃弾性波探査		
目的	①被災した建物・橋梁などの杭基礎の根入長、あるいは健全性の確認		
	②コンクリートのひび割れ深さの計測		
活用時期	応急対応、復旧復興		
技術の特徴	①建物や橋梁の基礎杭の根入長が不明の場合、その根入長を推定する調査手法の一つ。あるいは、基礎形式や根入長が既知の場合、地震等により破断している可能性について、非破壊で検査できることがある。本手法は、平成 11 年 12 月、建設省土木研究所、阪神高速道路公団、(財)土木研究センター、民間 12 社の共同研究「橋梁基礎構造物の形状および損傷調査マニュアル(案)」の中から、インティグリティ試験としての橋梁基礎の損傷調査法マニュアル(案)としてまとめられているものである。②ひび割れを挟んで弾性波の受発信を行うと、P波初動となる波は、ひび割れ先端を回り込む経路となるため、健全部に比べて走時が遅れる。健全部の走時と、同一受振距離でひび割れを挟んだ走時を測定すれば $d=a\sqrt{(t_0-t_c)^2-1}$ によりひび割れ深さを求めることができる。ここで d : ひび割れ深さ、 a : 送受信点間距離、 t_0 : 健全部における弾性波走時、 t_c : ひび割れを挟んだ走時		
得られる データ	波形記録から読み取れる杭長、損傷箇所の深度、ひび割れの深さの推定		
活用事例	鈴木ほか: 高周波衝撃弾性波法による既存護岸の鋼矢板長調査事例; 2022 年度農業農村工学会講演会講演要旨集 [7-15].		
	プートPC 対象 型定 対象		
	Δt(ma) At(ma) (t (ma) (km/s) (m)		
	古岸 漁港制 販設護庫 2 5.38 3 5.44 4 5.41 5 5.41 5 5.41 6 5.44 7 5.43 8 5.44 9 5.31 10 5.39 10 5.39		


基本事項	
No.	14
調査手法名	音響による水面下の地形調査
目的	堆砂状況や被災(洗掘)した地形状況を把握する
活用時期	応急対応、復旧復興
技術の特徴	船体に音響測深機を装着し、超音波を発信する。地形から跳ね返った受信波から地形の測深データを記録する。これにより、ダム湖・河川・運河・ 港湾施設などの堆砂状況調査や河床変動状況を把握する。船体は有人船か 無人船を選択し、測位は GNSS レシーバを用いておこなう。結果は汎用ソフトでその日のうちに速報として処理可能で、機動性に優れる。
得られる	等深線図、メッシュデータ(csv)、ソナー画像等
データ	
活用事例	堆砂状況調査例(等深線図) 「「なっている」 「なっている」 「なって

機器構成の例

計測状況の例

反射画像の例

留意事項等

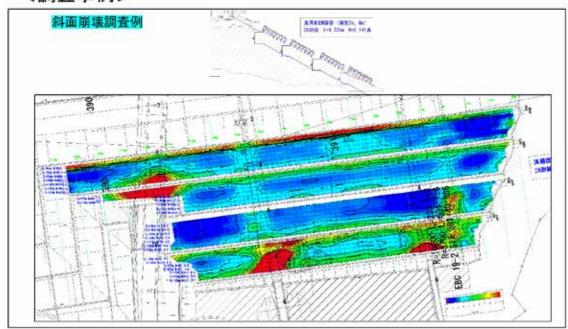
- ✓ 進入路があるほか、水深が 40cm 以上あること
- ✓ GNSS が受信できること
- ✓ 流れが穏やかであること(無人船の場合流速 0.8m/sec 以下を想定)
- ✓ 税込約 100 万円 + a

(橋長 150m 幅員 20m 計測 1 日を想定、 $\alpha =$ 動員・撤収,旅費・交通費等)

基本事項		
No.	15	
調査手法名	EM探査 (スリングラム法)	
目的	災害が発生した地域の地質、地盤の状況を非破壊で迅速に把握する	
活用時期	応急対応、復旧復興	
技術の特徴	EM探査とは、地中の電気伝導度(導電率)の分布を調べる物理探査手法で、非接触で地下構造を把握できる手法の一つ。探査装置は、1組の送信ループと受信ループで構成され、浅層部の探査にはループー体型、深層部の探査にはループ分離型が使用される。対象深度は数m~20m程度となる。また、「接触を必要としない」という利点から、舗装面上や河川堤防、アクセスの悪い場所でも迅速な調査が可能となる。探査の目的、対象の深度や規模によって、探査装置、ループ間隔、測点間隔を選択する。一般的には、測線上を移動しながら測点ごとに行い、測点間隔はループ間隔の1/2から2倍程度が望ましい。 EM探査の特徴としては、高導電率(=低比抵抗)に対する感度が高く、高比抵抗の地盤や岩盤中に存在する、地下水、粘土、金属埋設物等の低比抵抗を示す対象物の検出、その他として堤防等の簡易土質構成調査や廃棄物検出等に適用できる。	
得られる データ	電気伝導度	
活用事例	提体土質構造調査:粘土分布が急激に変化する地区を対象とし、EM探査の導電率分布による土質構造を推定した。 土質区分事例 ***********************************	

<探査装置>

> 装置を持って、一定間隔で計測点を移動することで探査可能



深度5m程度まで対応

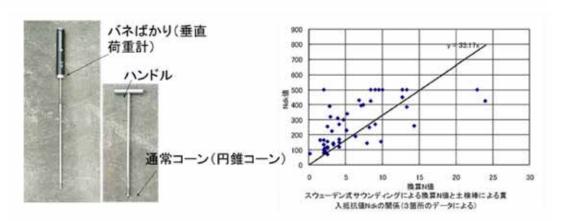
深度10~20m程度まで対応

<調査事例>

*斜面崩壊後に、EM 探査を実施した結果。上記コンターの図の赤いゾーンは含水比が高い 範囲を示しており、今後の対策範囲や危険範囲を評価した事例

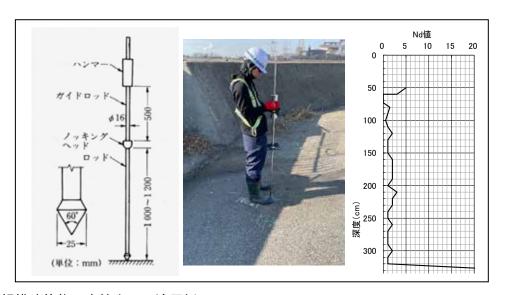
- ✓ 下記に示す電磁ノイズや金属構造物の多い場所は適用が困難
- √ 市街地、高圧線、電線、発電所、変電所、無線施設、ガードレール等は 適用が困難
- ✓ 積算は公表単価がないため、見積対応とする

土検棒の構成


土検棒の構成 (5mで4.5kg)

先端コーン 上が羽根付き コーン (ベー ンコーン) 下が通常の コーン (円錐 コーン)

試験実施状況



土層強度検査 概念図 (出典:土木研究所 地質・地盤研究グループ HP より)

- ✓ 石・瓦礫、植物根など異物が混入している場所では正確なデータが得られにくい。不均一性の影響が大きいことから、地質・地形条件や異物の有無によって、データの解釈には注意必要
- ✓ 積算は、「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂 歩掛版 (一社)全地連発行)を参照(頁 IV-170)

17
簡易動的コーン貫入試験
災害が発生した現場の限られた作業スペースで迅速に物性値を把握する
応急対応、復旧復興
簡易動的コーン貫入試験は、質量 5±0.05kg のハンマーを 500±10mm の
高さから自由落下させ、100mm 打ち込むのに必要な打撃回数を計測し、
原位置における地盤の動的な貫入抵抗を簡易かつ連続的に求めることを目
的とした試験となる。
この試験装置の質量は、ハンマーを含めて全体で 10kg~15kg 程度と軽量
で携帯性に優れ、熟練も要さず取り扱いも容易であるので、急傾斜の狭隘
な斜面でも調査可能となる。試験深度は、ロッドの周辺摩擦の影響から、
一般的に地盤表層部 4~5m 以内とされる。
この試験は、自然斜面、盛土法面、切土法面表層部の調査および小規模建
築物基礎地盤の簡易な支持力判定に適用できる。 この試験から得られる Nd 値は、土質別に N 値に変換することもできる。
この試験がり付りれる Nu 直は、工具別に N 直に交換することもできる。
Nd 値
①阪神・淡路大震災 (1995 年)
住宅地や埋立地などで、道路や盛土の液状化による地盤の支持力低下の
確認に活用した報告あり。
②新潟県中越地震(2004年)
道路の陥没や段差が見られる箇所で、Nd 値の変化から地盤の弱化を把
握。段差の形成位置と地盤の緩みの相関調査に利用。深さごとの支持力の
分布が得られ、どの層で弱化が起きたかを可視化した報告あり。
③東日本大震災(2011年)
液状化・軟弱化地盤のスクリーニングに活用。宮城・福島・茨城県の沿 岸部での液状化被害調査に使用。応急復旧作業や重機での走行ルート設定
「戸部での被扒化板書調査に使用。応急復旧作業や単機での定行ルート設定」 にも使用した報告あり。
(4)熊本地震 (2016 年)
盛土構造物の被災評価および緊急点検に活用。道路盛土やため池堤体の
被災状況を簡便に評価した報告あり。

機器名称	仕様	
	ロッド(単管式)	1m Ф16±0.2mm
 簡易動的コーン貫入試験器	ガイド用ロッド	0.5m Ф16±0.2mm
同勿判的コーン貝八武駅品	コーン	Ф25±0.3mm
	ハンマー	5±0.05kg

<小規模建築物の支持力への適用例>

Nd≦1 : 杭基礎あるいは地盤改良 (強ゆるみ部に相当)

1<Nd≦4 :周辺データから方針決定(弱ゆるみ部に相当)

Nd>4 : 直接基礎(健全部に相当)

*Nd=0は空洞

(引用:地盤調査の方法と解説、社団法人地盤工学会、2013、P321)

<N 値換算式(出典:地盤調査の方法と解説、地盤工学会、2013、P322)>

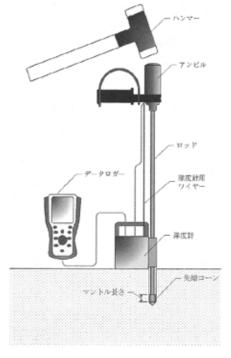
①粘性土の場合

②砂質土の場合

③礫質土の場合

・Nd>4 の場合 N=1.7+0.34Nd ・Nd>4 の場合 N=1.1+0.30Nd

・Nd>4 の場合 N=0.7+0.34Nd


・Nd≦4の場合 N=0.75Nd

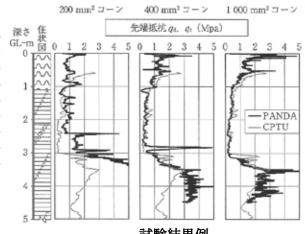
・Nd≦4の場合 N=0.66Nd

・Nd≦4の場合 N=0.50Nd

- ✓ 深度限界が低い(深度 4~5m 程度)
- ✓ 硬い地盤や礫質土では、より浅い深度で打ち止めになる可能性が高い。
- ✓ 土質判別ができない
- ✓ 操作が手動であるため、打撃エネルギー毎回一定でない場合がある
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行) を参照(頁 IV-163)

基本事項	
No.	18
調査手法名	ポータブル動的コーン貫入試験
目的	災害発生後の現場で迅速に表層地盤のコーン貫入抵抗値(qd 値)を把握する。
活用時期	応急対応、復旧復興
技術の特徴 得られる データ	ポータブル動的コーン貫入試験は、ハンマーを用いてロッドとその先端に接続したコーンを地盤に打ち込み、そのときの 1 打撃ごとのコーン貫入抵抗値(qd値)を求める試験である。試験装置一式がキャリングケースに一式収納された小型軽量な設計のため、1 人で人肩運搬可能であり、斜面や狭隘な現場にも適用可能である。データロガーはバッテリー駆動であり、電源供給が不要である。試験装置の取り扱いは容易であり、取得したデータはリアルタイムに確認することができ、調査頻度の修正等、現地で迅速に調査方針の決定することが可能である。この試験で得られるコーン貫入抵抗値(qd値)の相対的な変化をもとに、斜面表層の崩土厚の推定等に用いられる。
活用事例	① 法面崩壊斜面への適用 豪雨による崩壊斜面付近にて、表層の滑動層深度を評価する目的で活用した報告あり。② 堤防変状調査への適用 豪雨後の河川堤防にて、浸透による堤体の軟化・支持力低下を評価する目的で活用した事例あり。

試験装置概要図

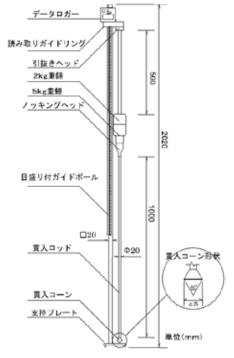

試験状況

(出典:応用地質 HP)

試験器具仕様

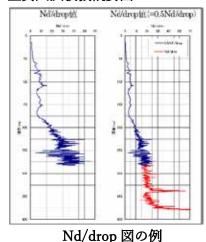
ハンマー質量 (kg)		1.725		
アンビル質量 (kg)		1.477		
ハンマー落下高さ			任意*	
打撃センサー		ひずみゲージ (ブリッジ)		
12	フド原径 (mm)		14	
コーン	新国稜 (cm²)	200	400	1 000
	先婚角(*)	90	90	90
	マントル長さ (mm)	16	22.5	35.7

^{*: 1}打撃ごとの質入長さを 5~10 mm 程度となるように打撃すること が推奨されている。

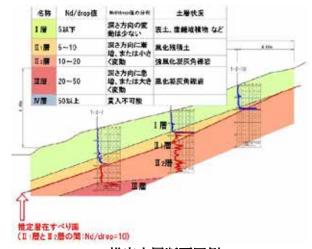


試験結果例

(図表出典:地盤調査の方法と解説、(社)地盤工学会、2013)


- 適用深度は 5m 程度まで
- 硬い地盤や礫質土では、5mより浅い深度で打ち止めになる可能性が高い
- 土質判別ができない
- 積算は公表単価がないため見積対応

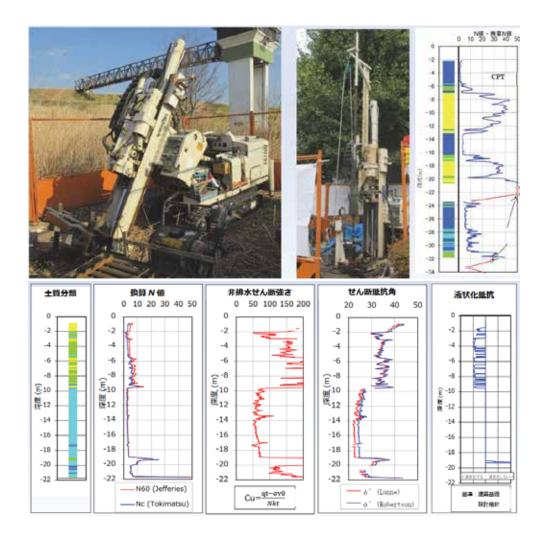
基本事項	
No.	19
調査手法名	SH 型貫入試験
目的	災害発生後の足場の急傾斜地等で、簡易かつ迅速に表層地盤の物性値を把
	握する。
活用時期	応急対応、復旧復興
技術の特徴	SH 型貫入試験は、質量 5 kg及び 3 kgのハンマーを 5 0 0 ±10mm の高
	さから自由落下させ、1 打撃後とのコーンの貫入量をデータロガーに自動
	記録することによって Nd/drop 値(5kg のハンマーによる貫入抵抗値)・
	Nd'/drop 値(3kg のハンマーによる貫入抵抗値)を求める試験である。
	試験装置一式は、ハンマーも含め 15~20kg 程度で可搬性に優れており、急
	傾斜地や狭隘な現場にも適用可能である。試験自体も容易であり、2人で調
	査可能な仕様である。測定深度は最大 10m 程度までである。
	比較的軟質な (N 値 10 程度以下) 地盤では得られた $Nd/drop$ 値は N 値
	と良好な相関関係にある。
	本試験は、国交省水管理・国土保全局の「河川砂防技術基準(調査編)」
	の改訂版における、斜面の崩壊の位置、規模や表層部の弱層を調査する方はよりての表層機体調本田節見貫み試験に該水より試験である。
得られる	法としての表層構造調査用簡易貫入試験に該当する試験である。 Nd/drop 値(5kg のハンマーによる貫入抵抗値)
待りれる データ	Nd/drop 値(3kg のハンマーによる貫入抵抗値) Nd'/drop 値(3kg のハンマーによる貫入抵抗値)
<i> - y</i>	Nd/drop 値 (Skg のパラマーによる真人抵抗値) ※Nd'/drop 値から Nd/drop 値に換算
× m + M	
活用事例	① 豪雨土砂災害後の地盤強度確認として適用
	令和元年東日本台風(台風19号)や令和2年7月豪雨の発生後に擁壁背面
	や局所的な緩み土層の評価、斜面の表層すべり面の把握による崩壊リスク の評価として適用した事例あり。
	の計画として適用した事例のり。
	 ② 地震災害後の液状化・地盤沈下の調査補完として適用
	東日本大震災 (2011 年)、熊本地震 (2016 年) の発生後に、液状化の疑い
	のある箇所にて、既存ボーリング調査や他サウンディング調査ではカバー
	しきれない局所にて適用した事例あり。



SH 型貫入試験機概要図

比較的軟質な(N値 10 程度以下)地盤では 得られた Nd/drop 値は N値と良好な相関関係

急傾斜地における試験状況

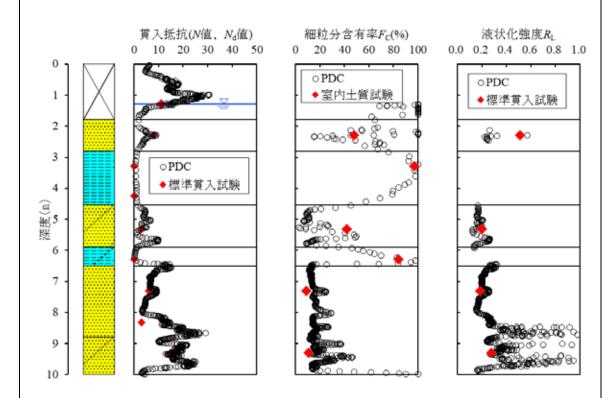

推定土層断面図例

にある。 Nd/drop 値 = N 値

(図表出典:SH型貫入試験技術・調査基準 同解説、表土層調査技術研究会)

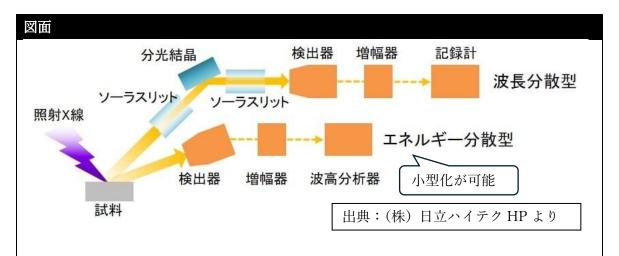
- ✓ 硬い地盤や礫質土では、より浅い深度で打ち止めになる可能性が高い。
- ✓ 土層中の未風化の礫や転石等に支障し貫入不能となる場合には、近傍に 試験位置をずらして再試験を行う。
- ✓ 土質判別ができない。
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和 7 年度改訂歩 掛版 (一社)全地連発行)を参照(頁 IV-164)

基本事項	
No.	20
調査手法名	三成分コーン貫入試験(CPT)
目的	災害が発生した現場の限られた作業スペースで、地盤の物性値を迅速に把
	握する
活用時期	応急対応、復旧復興
技術の特徴	災害復旧事業において、同時多発的な広域災害ではボーリング調査班の
	確保が困難となるケースが多い。災害復旧の工程上、迅速な地盤調査・解
	析が求められる場合は、対象事案の規模や性格に応じ、比較的簡易な地盤
	調査手法として「三成分コーン貫入試験(CPT)」が適用できる。
	「三成分コーン貫入試験(CPT)」は、ロッドの先端に装着したコーン貫
	入試験器で測定したコーン貫入抵抗、周面摩擦抵抗、間隙水圧から地盤構
	成および土の力学特性を推定する手法である。大きな玉石や砂礫地盤以外
	の N 値 20 以下の粘性土・砂質土での適用が可能で、通常の調査ボーリン
/日 > 1 o マ	グと比較して施工期間の短縮が期待できる。
得られる データ	●地盤構成および土の力学特性(換算 N 値、非排水せん断強さ、せん断抵 は ない 流性(水性な)
デーダ 	抗角、液状化抵抗) ※「換算 N 値 は CPT 諸量からの経験式による推定値であり、標準貫入
	X 「換昇 N 値」は CF1 商星からの程駛式による推定値であり、標準員入 試験 (SPT) で得られる N 値とは直接同一ではない。適用条件・地盤種
	別によって相関は変動するため、他調査との整合確認を推奨
 活用事例	●小規模構造物基礎調査(橋梁、堤防、盛土、道路等)
10/04-01	●液状化判定調査

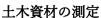


- ✓ 大きな玉石や砂礫地盤や N 値 20 以上の粘性土・砂質土では適用困難
- ✔ 自走式ボーリングマシンのため、アクセス条件が限定される
- ✓ オペレータにマシン操作の知識・技術が必要
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行)を参照(頁 IV-161)

基本事項		
No.	21	
調査手法名	ピエゾドライブコーン (PDC)	
目的	経済的で効率的な調査による適正な液状化対策の立案	
活用時期	応急対応, 復旧復興	
技術の特徴	経済的で効率的な調査で、適正な液状化対策	
	・ 従来の調査*1と比較して、工期は約 1/5*2	
	・ 液状化等の対策必要範囲の絞込み、事業費全体の削減が可能	
	・ コンパクトな貫入装置で狭い場所でも実施可能	
	・ 動的貫入装置を使用するため反力が不要	
	・ 車輪付きで人力移動可能	
	・ ボーリング調査に比べて、占有面積が約 1/3*3	
	*1: 従来の一般的な液状化調査では、ボーリングと 1m間隔に実施する標準貫入試験により、N 値と地下水位 を調べ、標準貫入試験で採取した試料を用いて室内土質試験を行い、土質区分と細粒分含有率 Fc を把握	
	し、液状化判定 *2:深度 20m/1 箇所の調査で比較	
	*3: 一般的なボーリング調査の占有面積が約 15 ㎡、PDC の占有面積は 6 ㎡	
得られる	打撃貫入時の残留間隙水圧から細粒分含有率 Fc、貫入量から Nd 値(N 値	
データ	相当値)を1打撃ごとに連続的に推定	
活用事例	平成23年東北地方太平洋沖地震で液状化被害を受けた浦安市の宅地で、	
	メカニズム解明及び液状化対策工に必要な物性値を得るために実施	
	ボーリングによる調査 (従来) → PDC による調査 →	
	#	
	200m 200m	
	調査精度に比例した対策範囲の設定・ 調査精度に比例した対策範囲の設定・ はな変異なる場合	
	対策範囲の設定 安全側の対策規模 適正な対策規模	
	同じ調査予算で液状化調査した場合の比較概念図	
	ボーリングと PDC の組み合わせ調査	
	出典:PDC コンソーシアム HP	


PDC の外観 出典: PDC コンソーシアム HP

PDC による調査事例 出典:PDC コンソーシアム HP


- ✓ 液状化対策工等における対策前・対策後の調査では、試験結果に機械誤差等の影響を与えないよう、対策前・対策後ともにラムサウンディングを使用することが望ましい。
- ✓ 地表付近にガラ等が分布する地盤の場合、コアドリルやボーリングによる先行掘削が必要な場合がある。
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行)を参照(頁 IV-165)

基本事項						
No.	22					
調査手法名	携带型蛍光 X 線分析					
目的	災害発生土および建設発生土等の重金属等の含有量や構成率を概略把握する					
活用時期	応急対応, 復旧復興					
技術の特徴	物質にX線を照射すると蛍光X線が発生し、その中には元素特有の特性X					
	線が含まれている。その特性X線のエネルギーを強度として計測することに					
	より、非破壊、多元素同時かつ前処理不要で粉末、液体、固体試料中の元素					
	分析や元素分布を容易に測定できる。公定法による土壌含有量試験は、試料					
	を分析機関に持ち込んで試験結果を得るまでに日数を要し試料数が多いと費					
	用が嵩む。携帯型蛍光 X 線分析装置は、現場で 1 測定につき数分で含有量					
	が同時に得られ、試料数が多いと低コストで結果が得られる。					
得られる	重金属等の元素分析結果(含有量(ppm)もしくは構成率(%))					
データ						
活用事例	トンネル施工に伴う掘削ズリの環境汚染リスクを評価することを目的にボ					
	ーリングコアを対象に簡易蛍光X線分析を実施した事例を示す。					
	対象の地質は新第三系の堆積岩(泥岩および凝灰岩)であり、公定法による					
	溶出量試験では、As(ヒ素)およびSe(セレン)で管理基準値を超えたため					
	対策の検討が必要と判断された。そのため、汚染土量を詳細に把握するた					
	め、ボーリングコア 1mピッチで簡易蛍光 X 線分析を実施し対策土量の算定					
	を行った。 					
	古 質 ② ② ② ③ ③ ③ ③ ③ ③ ③					
	m 号 名 0.010 0.020 3.0 6.0 9.0 12.0 0.010 0.020 1.0 2.0 3.0 4.0					
	管理基準値					
	150.00 1					
	出典:西俊憲、打木弘一、「自然由来重金属等含有トンネルズリの簡易蛍光					
	X線分析装置による汚染土量の算定に当たっての課題」、全地連「技					
	術フォーラム 2014」秋田、2014 年 9 月					

蛍光 X 線分析装置の測定原理

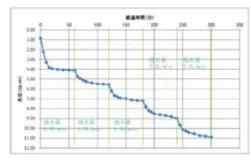
ボーリングコアの測定

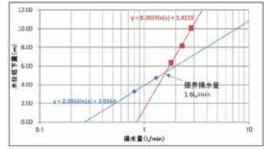
湧水の測定

泥岩露頭のクロム濃度分布の整理例

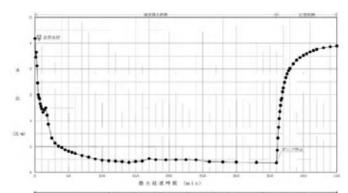
- ✓土壌汚染対策法等の汚染判定には公定分析法ではないため適用できないものの、公定分析試料を選定するための根拠および地質ごとの重金属等含有量の参考値として利用
- ✓本手法は一次スクリーニングとして有効であり、重金属溶出の判定等は二次調査(公定法)により基準適合性を確認する
- ✓ 信頼できる測定下限は、元素により異なるものの数 ppm 程度
- ✓ 試料の含水状態によって測定値は変化する場合がある
- ✓ 積算は公表単価がないため、見積対応とする。

基本事項							
No.	23						
調査手法名	AI 画像解析を用いた簡易粒度判定						
目的	画像解析によって土の粒度分布を簡易判定する						
活用時期	応急対応, 復旧復興						
技術の特徴	土の試料をスマートフォンやタブレット端末によって写真撮影を行い、						
	撮影された画像を画像分析 AI によって分析することにより、土の粒度分布						
	を推定する技術である。砂質土を対象とした分析が可能。						
	本技術は、室内土質試験に代わるものではなく、現場における土質材料						
	の粒度判定を技術者の目視や触診によるものから本技術を用いることで目						
	視による粒度判定よりも土質材料の粒度を定量的に推定できる。						
得られる	AI 予測による簡易的な粒径加積曲線						
データ	AI 子側による間勿りな位任加慎曲隊						
	築堤材料における土質確認の実施例および粒度試験と AI 予測結果の比較						
	10:06 asi 40 ==						
	分析結果						
	100% 90% ** 程度試験結果 ** 人子测熱里						
	2 70 g 70%						
	5 505						
	10 MH 405 MH 30%						
	90 20% 90 10% (MH2)						
	0.075mm 20.5 [%] (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)						
	0.01 0.1 1 10 100 整径 (mm)						
	0.250mm 35.3 [%]						
	0.425mm 46.2 [%]						
	0.850mm 60.9 [%] 2.000mm 72.6 [%] 8 88 25 30 40 50 50 76 80 76 50						
	2.000mm 72.6 [%] 前かから 10 mm 2 m						
	分析結果の例 粒度試験と AI 予測結果の比較						


撮影画面例



分析手順例


- ✓ 活用可能な想定事例としては、日常の盛土工事の管理で土質試験の補完 としての土質確認や、様々な現地調査で概略の土の粒度を把握する場合 などがある。
- ✔ 撮影面の均し状況、天候等の撮影条件が予測精度に影響する。
- ✓ 自然の土砂によって AI 学習をしているため、粒径の均一な土砂や人工 材料、その他、一般的でない土の粒度の予測は困難である。
- ✓ 粒径 0.075mm 以下の粘性土、粒径 10mm 以上の礫質土は適用範囲外。
- ✓ クラウド上で画像解析するため、インターネット通信環境が必要。
- 積算は公表単価がないため、見積対応とする。

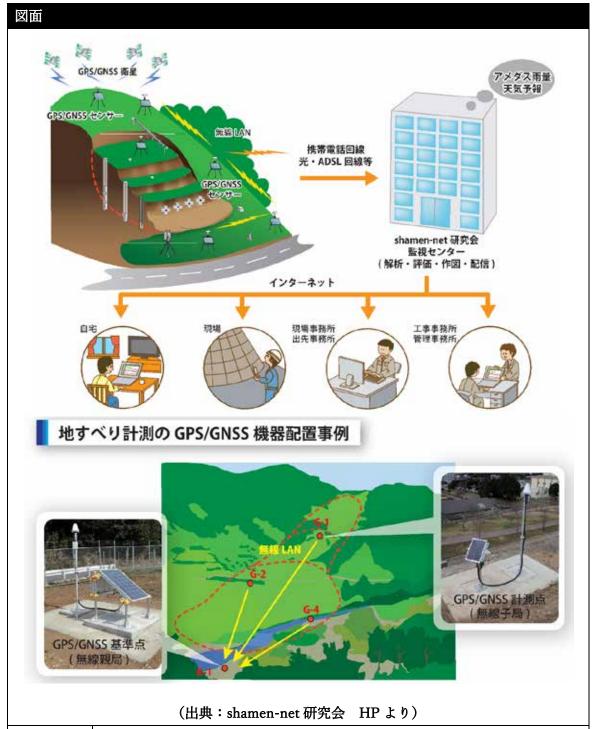
基本事項	
No.	24
調査手法名	地下水の応急利用調査
目的	上水道施設被災時の代替水源として地下水・湧水利用の可能性や、利用目 的に応じた水質の適否について調査する
活用時期	応急対応、復旧復興
技術の特徴	地震その他の自然災害等により広域的な断水が発生した場合、上水道が復旧するまでの間、これを補完する応急用の飲料水又は生活用水として地域住民に提供する井戸や湧水を確保するとともに、その水質が利用目的に適しているか判断することが重要である。 代替水源として既設井戸を利用する場合、古い井戸では適正揚水量などの井戸性能が不明な場合がある。その場合、揚水試験(段階揚水試験・連続揚水試験)を実施することにより井戸性能や地下水帯水層の特性を評価できる。 また、飲用以外の生活用水に利用する場合の代表的な簡易水質分析項目として「pH・水温・電気伝導度・臭気・色度・濁度」などがあり、これらの項目は現地での直接分析が可能である(ただし、飲用利用にあたっては法令や基準に則った水質基準を満たさなければならず、別途室内分析が必要である)。 【参考】 (災害時地下水利用ガイドライン〜災害用井戸・湧水の活用に向けて〜内閣官房水循環政策本部事務局)
得られる データ	●対象井戸の井戸性能:限界揚水量・適正揚水量など(段階揚水試験) ●地下水帯水層の水理定数:透水係数や貯留係数など(連続揚水試験) ●pH・水温・電気伝導度・臭気・色度・濁度など(簡易水質分析)
活用事例	●災害時の上水道代替水源の確保

段階揚水試験解析例

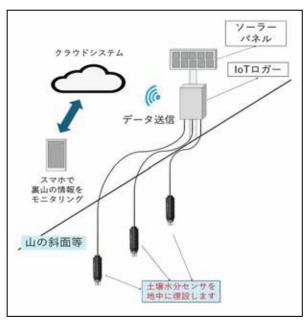
			透水量係款	透水保製	k	射爾係款
ヤコブの直線解析法		1, 54×10 ⁻⁹⁴ nf	min 3.22×10	cn/s	2.04×10	
91	スの非平	衡式	1.40×10 m	min 2.92×10	cm/s	4, 10×10
В	W	th:	1.17×10 ⁴⁴ nf	nin 2.43×10 °	586/8	
¥		均	1.37×10 ⁻¹⁴ ml	min 2.86×10	cm/n	3.07×10^{-69}

連続揚水試験解析例

現場簡易水質分析例

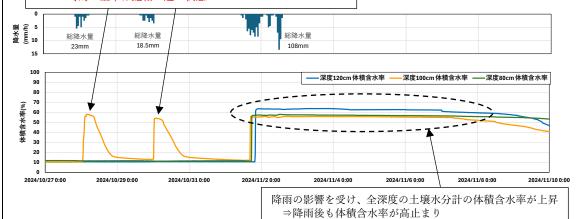

- ✓ 災害事後においては適切な代替水源を早期に確保できない可能性がある ため、事前に代替水源候補を選定・調査しておくことが望ましい
- ✓ 停電時を想定し、揚水用動力源(発電機等)の確保と、ポンプの種別 (既設・仮設必要の有無)を事前確認すること
- ✓ 揚水試験の積算は「さく井·改修工事標準歩掛資料」(令和6年度版 (一社)全国さく井協会)を参照(頁 89)
- ✓ 簡易水質分析の積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩掛版 (一社)全地連発行)を参照(頁 IV-82)

基本事項					
No.	25				
調査手法名	傾斜計(地表面)				
目的	発災後土砂崩れ箇所に設置し、二次災害防止のためにモニタリングする。				
活用時期	発災直後、応急対応、復旧復興				
技術の特徴	自然斜面や人工斜面は、緩みやすべり等を要因として徐々に変動する。傾斜センサは、この変動を捉えることを目的として開発されたセンサである。不安定岩塊や構造物等といった斜面以外の変動監視にも利用できる。センサモジュールには MEMS (Micro Electro Mechanical Systems) 技術を活用し、無線モジュールには特定小電力無線を採用したことで、小型軽量化、省電力、そして低価格を実現した。これにより、従来の計測機器と比較して設置の簡素化と多点化が可能となった。				
得られる	傾斜角度、傾斜角速度				
データ					
活用事例	豪雨災害後の二次災害の監視や平常時の道路法面のモニタリング (個針センサの設置状況) 国道沿いの斜面崩壊				
	道路沿いの法面モニタリング				


照 (頁 IV-203)

基本事項	
No.	26
調査手法名	GNSS
目的	地形変化をリアルタイムで把握する
活用時期	発災直後、応急対応、復旧復興
技術の特徴	衛星測位技術を用いて地表や構造物のわずかな動きを高精度かつリアルタイムで計測できる点が大きな特徴。天候や昼夜を問わず 24 時間監視が可能で、地震や地滑りなどの急激な地殻変動から、ダムや橋といったインフラ構造物の長期的な変動まで幅広く対応できる。複数地点のデータを自動的に解析し、異常を早期に感知できるため、防災・減災やインフラ維持管理、災害対策に必要な技術である。
得られる データ	観測地点の正確な3次元座標(緯度・経度・標高)
活用事例	①熊本県阿蘇地方の地すべり地帯 阿蘇地域の地すべり危険箇所に GNSS 受信機を設置。斜面のごくわずかな変動をリアルタイムで検知し、異常変位を早期に察知。これにより住民への避難勧告の判断材料となった。 地震による地殻変動・インフラ被害の把握 ②各地の大規模河川堤防やダムサイト 堤防やダムの上流域に GNSS センサを設置し、豪雨や地震時の変位をリアルタイムで監視。異常値をもとに現場確認や応急対策を迅速化。国土交通省も一部導入。 ③広島県安芸地区 土石流危険渓流 過去に大規模な土砂災害が発生した地区で、土石流発生前の地盤変動をGNSS で常時モニタリング。変位データをもとに、避難準備・避難指示の発出判断に使用した。

- ✔ 受信機は遮蔽物(樹木等)が少ない場所を選定
- ✓ 標高は 10~30cm 程度の誤差が生じうるため、注意が必要
- ✓ 定期的な目視点検・保守点検計画を立て、大雨・地震・積雪時は機器の 安全点検が必要
- ✓ 積算は、利用する機材や対象面積によって変動するため、適宜の問合せ を要する


基本事項	
No.	27
調査手法名	土壌水分計
目的	土中の水分量を定量的に把握し、豪雨時に斜面の安定性が低下する兆候を監
	視する。
活用時期	応急対応、復旧復興
技術の特徴	斜面災害は突発的かつ局所的に発生する自然災害の一つであり、人的・物的被害を未然に防ぐためには、平常時からのモニタリングと危険兆候の早期把握が非常に重要である。特に、降雨や融雪による水の供給によって土壌に含まれる水分量が増加すると、間隙水圧の上昇や土のせん断強度が低下し、結果として斜面安定性が損なわれることにつながる。 従来から、斜面安定性の監視指標として雨量が広く用いられているが、雨量はあくまで大気からの水の供給量を示すものであり、地中における水分の分布や蓄積状況を直接的に反映するものではない。また、土質や地形条件によっては、同じ降雨量でも土中の水分量の変化が大きく異なることから、雨量のみで斜面リスクを管理することは難しいのが実情である。 一方、土壌水分量は実際の地盤の水分量を定量的に捉えることができるた
得られるデ ータ	め、災害発生の兆候を捉える指標の一つとして利用することが可能である。 土中の体積含水率
活用事例	【鉄道沿線斜面における活用事例】※傾斜計・雨量計と併用利用

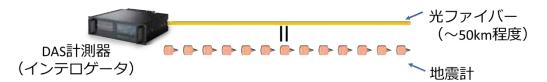
土壌水分計の利用方法の例

(出典:地方独立行政法人 東京都立産業技術研究センターHP)

降雨の影響により、一部深度の土壌水分計のみ体積含水率が上昇 ⇒降雨後、体積含水率が速やかに減少 一時的に土中は飽和に近い状態

モニタリングデータの例

留意事項等


✓ 土壌水分計の設置場所や設置数はや現地踏査により選択が必要。

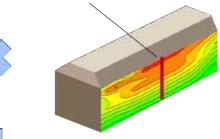
土中は飽和状態あるいは飽和に近い状態

- ✓ 固い地盤や礫の直下への設置は避ける。
- ✓ 積算は公表単価がないため見積対応。

基本事項					
No.	28				
調査手法名	DAS(Distributed Acoustic Sensing)による振動計測				
目的	河川堤防や道路など長大なインフラに対して遠隔から高密度に計測することで短時間にスクリーニングし、弱部や異常の有無を見つける				
活用時期	応急対応、復旧復興				
技術の特徴	圧倒的な長距離・高密度の振動データが取得可能 ・ 分散型センサ:光ファイバ全体をセンサとして利用 ・ リアルタイムデータ監視: データを即時に監視可能 ・ 長距離測定:数 10 キロメートルの範囲をカバー ・ 遠隔地からの測定:河川道路事務所等でデータを取得可能 ・ 耐環境性:過酷な条件下でも光ファイバは劣化しにくい ・ 高い空間分解能:最小 1m 程度の間隔でデータ取得が可能 ・ 多様な応用:地震探査、地震観測、インフラ監視など				
得られる データ	光ファイバ沿いの振動レベル、2次元の連続したS波速度分布により地盤 構造を把握				
活用事例	実証実験では河川堤防(約 9km)や道路(約 57km)の地盤構造を 1 日で計測し、地盤の S 波速度構造を把握した。 【現地の計測期間】 ・地震計: 9 日				

光ファイバ1本を多数の地震計として利用できる

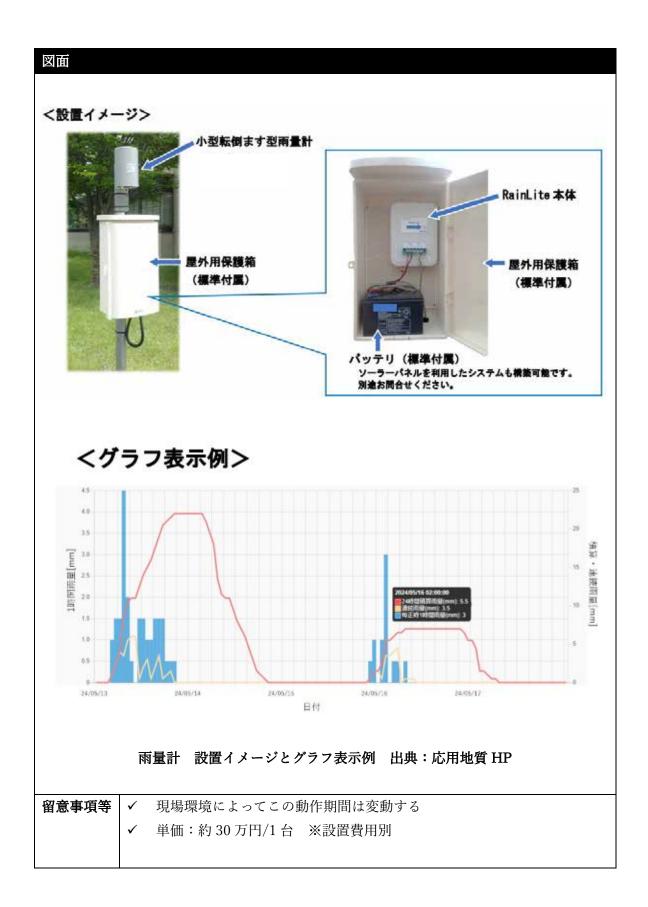
例えば5m間隔で設定すると、地震計 10,000個に相当



圧倒的に長距離・高密度の振動データが取得可能

数10kmを一度に計測可能

見つけた弱部に対し ボーリング等の詳細調査を実施

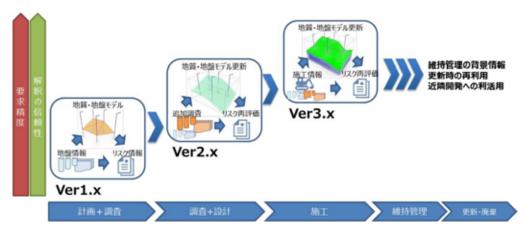


光ファイバセンシング技術を地盤調査へ適用

出典 小川直人 (2025):光ファイバ振動計測 (DAS)~「新たな」地盤の見える化技術~, OYO フェア 2025 セミナー資料

- ✓ 災害後の計測だけでなく、事前対策として通常時からモニタリングして おくとより効果を発揮
- ✔ 既に敷設されている光ファイバー網を活用できるが、空き芯が必要
- ✓ 対象とする距離によって価格が変動する。積算は公表単価がないため、 見積対応とする。

基本事項			
No.	29		
調査手法名	雨量計		
目的	災害が発生した後に局所的な降雨量を把握することで、二次災害の防止な		
	ど復旧作業に対する影響を評価		
活用時期	応急対応,復旧復興 		
技術の特徴	携帯電話事業者が提供する携帯通信網を利用しているため、専用電話回線		
	工事の必要がない。		
	・ 軽量・コンパクト		
	・ 通信・電源がパッケージ化されており、運搬&設置が容易		
	・ 高い汎用性で気象庁検定付雨量計が利用可能		
	・ リモートによる雨量の遠隔監視が手軽に構築可能		
	・ 一般的な市販の接点式雨量計感部でも利用可能		
 得られる			
データ			
活用事例	令和6年能登半島地震では復旧工事の安全管理に雨量計を活用すること		
	で、供用後においても道路交通の安全確保のため常時観測を行っている。		
	設置事例		



基本事項					
No.	30				
調査手法名	地盤の3次元モデル				
目的	調査成果をモデリングにより可視化する。				
活用時期	復旧復興				
技術の特徴	災害時にセンシングや地盤調査により得られた情報をモデリングし、状態 把握するために可視化する技術である。ボーリングデータ・地質断面図を モデリングソフト内に座標付けで配置し、空間的な地盤情報を把握するこ とは容易かつ迅速にできる。更に、詳細な地盤構造解明には3次元地盤モ デルを利用できる。				
得られる	ボーリングモデル、準3次元モデル、3次元地盤モデル※				
データ	※サーフェスモデル、ソリッドモデル、グリッドモデルなど幅広い				
活用事例	のり面の地形地質情報を可視化した事例を示す。ボーリングモデルや対策工を空間的に配備することで対策工のイメージを可視化。				
	のり面の地形地質情報の可視化例 出典:3次元地盤モデリングガイドブック(3次元地質解析技術コンソーシアム) 3次元地質・土質モデルガイドブック(令和4年2月(一財)国土地盤情報センター))				

図面 【3次元地盤モデル】 支持層や強度分布、地下水分布を予測したモデル 支持層サーフェスモデル 地層モデル ル 値ボクセルモデル 地下水血モデル

3次元地質・地盤モデルの利活用や更新に必要な情報を引き継ぐ

3次元地質・地盤モデルは、モデル作成時点までの各事業段階の地質調査成果を基に作成されるため、次の事業段階におけるモデルの更新に備えた確実な情報の継承が重要である。そのためには、モデルの根拠となる地盤情報に加えて、モデル化の補間手法、使用ソフトウェア、地盤の物性値、モデルの不確実性、想定される地質・地盤リスク等のモデル更新に必要十分な記録を残す必要がある。

3次元地質・地盤モデルの各事業段階での更新

(出典:3 次元地盤モデリングガイドブック(3 次元地質解析技術コンソーシアム)ほか)

- ✓ ボーリングデータを空間に配置するボーリングモデル、断面図を空間に 配置する準三次元モデルは比較的容易かつ安価
- ✓ 一方でサーフェスモデル、ソリッドモデルは高コスト
- ✓ 積算は「全国標準積算資料(土質調査・地質調査)」(令和7年度改訂歩 掛版 (一社)全地連発行)を参照(頁 II-51)

令和7年10月

編集発行

一般社団法人 全国地質調査業協会連合会 〒101-0047 東京都千代田区内神田 1-5-13 TEL:03-3518-8873 FAX:03-3518-8876 https://www.zenchiren.or.jp

デザイン/印刷所 株式会社サンワ

【問い合わせ】

本カタログに関するご意見やご質問は、全国地質調査業協会連合会または各地区協会ま でお問い合わせください。

連絡先

一般社団法人全国地質調査業協会連合会

住所: 〒101-0047 東京都千代田区内神田 1-5-13 内神田 TK ビル 3F

電話番号: 03-3518-8873 **FAX 番号**: 03-3518-8876

E-mail: igca@zenchiren.or. ip

ウェブサイト: https://www.zenchiren.or.jp/

各地区協会の連絡先

北海道地質調査業協会

7丁目1 (第1水産ビル5階)

電話番号: 011-251-5766

東北地質調査業協会

-1-8 (パルシティ仙台 1F)

電話番号: 022-299-9470

北陸地質調査業協会

1 ノ町 1977 (ロイヤル礎 406)

電話番号: 025-225-8360

関東地質調査業協会

(内神田クレストビル) 電話番号: 03-3252-2961

中部地質調査業協会

住所: 〒461-0004 名古屋市東区葵 3-25- 住所: 〒903-0128 沖縄県中頭郡西原町森

20 (ニューコーポ千種)

電話番号: 052-937-4606

関西地質調査業協会

住所: 〒060-0003 札幌市中央区北3条西 住所: 〒550-0004 大阪市西区靱本町 1-

14-15 (本町クィーバービル)

電話番号: 06-6441-0056

中国地質調査業協会

住所: 〒983-0852 仙台市宮城野区榴岡 4 **住所**: 〒730-0017 広島市中区鉄砲町 1-18

(佐々木ビル)

電話番号: 082-221-2666

四国地質調査業協会

住所: 〒951-8051 新潟市中央区新島町通 住所: 〒761-8056 高松市上天神町 231番

地 1 (マリッチ F1 101) 電話番号: 087-899-5410

九州地質調査業協会

住所: 〒101-0047 千代田区内神田 2-6-8 住所: 〒812-0013 福岡市博多区博多駅東

2-4-30 (いわきビル) 電話番号: 092-471-0059

沖縄県地質調査業協会

川 143-2 (森川アパート 106 号)

電話番号: 098-988-8350