沈降分析における測定の自動化への試み(その2)

(協)関西地盤環境研究センター 〇三好 功季、藤村 亮、林 峻平中山 義久、松川 尚史、澤 孝平、西形 達明

1. はじめに

我々は2017年¹⁾より沈降分析³時の浮ひょう読取の自動 化をレーザー測器で試みている。成果の一部に JIS 法と 提案法で得られた試験結果に乖離のある場合も発生した ²⁾。その要因として、浮ひょう浮遊防止用のプラスチッ ク製のフタと浮ひょう竿部の接触により生じる摩擦や静 電気の影響(図-1)が考えられた。

本報告では、浮遊防止用フタの材質の違いが浮ひょう の挙動に与える影響について検討した。

2. 事前実験の方法及び結果

事前実験として、図-2に示す4種類(アルミ、プラスチ ック、ガラス、樫の木)のフタを用いて、浮遊防止用フ タの材質が浮ひょうの挙動に与える影響を調べた。事前 実験は、図-3に示す様に濃度分布が一定である液体を入 れたメスシリンダーの下部から一定の速度で液体を排水 させ、その時の浮ひょうの移動量と時間の関係を計測し た。それらの結果を図-4に示す。その結果より、プラス チック製のフタは浮ひょう読み値に大きな影響を与える ことが確認できた。一方、樫の木及びガラスのフタは、 浮ひょうの挙動に与える影響は小さく、フタ無と同等の 結果が得られた。事前実験から、本実験で使用する浮遊 防止用のフタを樫の木及びガラスに決定した。なお、2020 年度²⁰に実施している、レーザーで計測した結果(提案法) と従来の試験方法(JIS法)の比較実験ではプラスチック 製のフタを使用している。

3. 本試験の方法及び結果

本実験において使用した試料は、表-1に示す物理的性 質の異なる5種類の粘性土である。これらは、従来からの 実験で用いている試料と同じである。実験は、メスシリ

図-1 ターゲット板に当たるレーザー光線と浮遊防止のフタ 写真は2019年、プラスチック製

図-2 フタの材質の違い (左からガラス、樫、アルミ、プラスチック)

図−3 事前実験の様子

図-4 事前実験結果

表-1 試料の種類と物理試験結果

試料名	土粒子の密度 ρ _s (g/cm ³)	液性限界 w _L (%)	塑性限界 w _P (%)	塑性指数 I _P
カオリン1	2.765	59.9	32.5	27.4
カオリン2	2.652	24.2	17.6	6.6
笠岡	2.672	57.5	21.7	35.8
荒木田	2.713	46.5	24.0	22.5
藤ノ森	2.672	39.8	19.7	20.1

表-2 レーザー測器の諸元

メーカー	OPTEX FA/CD22-100V2
測定範囲	±5cm, 最大10cm
最小読み取り値	6µm

ンダーに炉乾燥試料を50g ずつ入れ、11 の懸濁液として 分散・攪拌後、沈降分析を実施した。

浮ひょう頭部の変位量測定は前回²⁰と同じく、レーザー 測器(諸元は**表-2**参照)を用いた。今回の実験において 浮ひょう頭部に取り付けたターゲット板は直径が6mm で、接着剤で頭部に直付けした。この改良によりターゲ ット板付加による質量増加は約0.01g 程度とすることが 出来た。実験は1試料について、3サンプルずつ測定し、 その平均値を測定値とした。

本実験で得られた粒径加積曲線を図-5~9に示す。図中 には従来の試験方法(JIS法:フタ無)と提案法の試験結 果を示している。図中の曲線は各方法の3回測定の平均値 で示している。カオリン1、笠岡、荒木田の試験結果から は全ての方法において顕著な差は見られず JIS 法とほぼ 同等の結果が得られた。カオリン2は、プラスチック製の 結果が他の材質、方法と比ベ少し上位(細粒側)に位置 している。さらに、藤ノ森ではプラスチック製の結果が 下位(粗粒側)に位置している。この要因としてプラス チックと浮ひょう竿間の静電気による引き付け力によ り、浮ひょうの動きが阻害されていることも考えられる。 このことは事前実験の結果からもプラスチック製は浮ひ ょう読み値のバラツキが大きく一番安定していないこと が考察出来る。

4. まとめ

レーザー測器による沈降分析時の浮ひょう読取の自動 化に必要不可欠な、浮ひょう浮遊防止用のフタの材質を 変えて実験を試みた結果、静電気の発生の少ない材質を 選ぶことが重要であることが分かった。

沈降分析の浮ひょう読取りの自動化は、作業効率の面、 働き方改革の実践面から考えても、有効な手法になりう る。今後は浮ひょう傘部の改善・改良とともに、より幅 広い種類の土試料に対して実験し、実務レベルでの沈降 分析の自動計測化を実現したい。

- 1) 粒度(沈降分析)試験の測定方法の検討:藤村亮,松 川尚史,三好功季,澤孝平,中山 義久,第54回地盤工 学研究発表会,pp.19~20,2019.
- 2) 沈降分析における測定の自動化への試み:三好功季, 藤村亮,松川尚史,中山義久,澤孝平,西形達明,全地 連技術フォーラム2020論文集,論文 No.26, 2020.
- 3) 地盤工学会編:地盤調査の方法と解説、二分冊の1、 pp. 115-136, 2013.

100 90 80 % プラスチック製 70 60 通過質量百分率 木製 50 40 ガラス製 30 JIS法 20 10 カオリン2 n 0.001 0.01 0.1 粒径 (mm)

図-8 JIS 法と異なる材質の粒径加積曲線(荒木田)

図-9 JIS 法と異なる材質の粒径加積曲線(藤ノ森)

現場で測定した砂質土の湿潤密度と室内試験値の比較

(株)ダイヤコンサルタント 〇中西 智哉、小川 尚之

1. はじめに

土の湿潤密度は、地盤の支持力、圧密沈下、土圧や安 定解析等の構造物設計に必要な土の単位体積重量の算定 に利用される¹⁾。地下水位以深の砂質土層については、室 内試験で得られた湿潤密度は、飽和度100%として補正し て用いられる。これは、ボーリング現場において、サン プリングした砂質土試料は、運搬時の振動による撹乱防 止のために、間隙水を十分に排水後凍結して運搬するこ とが多く²⁾、排水の影響により、砂質土試料の含水比が減 少し、室内試験での湿潤密度は実際より小さく測定され るからである。

サンプリング直後の砂質土試料の湿潤密度は、飽和度 100%として補正した値と近い値を示すと想定される。し かし、細粒分含有率が小さい試料では試料引き上げの際 に水が抜けてしまい、サンプリング直後の湿潤密度は飽 和度100%として補正した値より小さく測定されること が考えられる。

以上から、本稿では、①「現場でサンプリング直後に 測定した排水前の砂質土の湿潤密度(現場測定値)」、② 「排水後に室内試験で測定された湿潤密度(室内試験 値)」、③「室内試験値を飽和度100%として補正した湿潤 密度(補正値)」を比較し、その関係を確認した結果を報 告する。

2. 試料採取・湿潤密度の測定方法

サンプリングの対象は、地下水位以深の下総層群を構 成する洪積砂質土層(N値=11~40)とそれを覆う沖積 砂質土層(N値=1~5)である。試料のサンプリングは、 ロータリー式三重管サンプラー(JGS 1223)で行うこと を基本とし、砂質土が緩く採取が困難である場合は、固 定ピストン式シンウォールサンプラー(JGS 1221)によ り試料を採取した。

(1) サンプリング直後の試料の湿潤密度測定

ボーリング現場で、サンプリング直後に間隙水排水前 の湿潤密度の測定を以下の手順で行った。

- ① 使用するサンプリングチューブの質量、全長を測定。
- ② 試料採取直後に、サンプリングチューブ端から試料端の長さを測定し、採取試料の全長を測定(図-1)。 採取試料全長とチューブの内径から採取試料の体積 V (cm³)を算出。
- ③ 試料の入ったサンプリングチューブの質量を測定 (図-2)。事前に測定したチューブの質量を引いて試料の質量 m (g)を算出。

④ ②、③で測定した試料の体積 V (cm³)と質量 m (g)
 から現場測定値 ρ_t (g/cm³)を算出。

図-1 サンプリング試料全長測定の模式図

図-2 現場での試料の質量測定状況

(2) 採取試料の凍結・運搬

採取した試料の凍結は以下の手順で行った。

- サンプリングチューブの先端の隙間にスポンジ等を 詰め、先端をメッシュで蓋をする。
- ② チューブ先端を下にして鉛直に立て、約24時間かけ て排水する。排水状況を把握するために、先端にビ ニール袋を装着する。
- ③ 排水完了後、試料を、ドライアイスを敷いた凍結箱 に入れ、1~2時間置いて凍結する。(図-3)
- ④ 凍結完了後、試験室へ運搬する。

図-3 採取試料の凍結状況

(3) 室内試験での湿潤密度の測定

凍結運搬した試料を用いた試験は、各物理試験(土粒 子の密度試験、含水比試験、粒度試験、湿潤密度試験(ノ ギス法))は、JIS 規格に則り実施した。

対象とする砂質土は、地下水以深の試料であるため、 以下の式を用いて、室内試験値を飽和度が100%として補 正した湿潤密度 ρ_t 'も算出した。

$$\rho_t' = \frac{\rho_s + e \cdot \rho_w}{1 + e} \quad \cdot \quad \cdot \quad (1)$$

 $\rho_s: 土粒子の密度、 \rho_w: 水の密度(1 g/cm³)、 e: 間隙比$

3. 現場測定・室内試験結果および考察

サンプリング試料を用いた物理試験の結果一覧表を表 -1に示す。

湿潤密度について、現場測定値、室内試験値、飽和度 100%とした補正値を比較した結果を図-4に示す。

室内試験値は、現場測定値よりも小さい値を示す傾向 がある。これは、凍結前の間隙水の排水により試料の含 水比が減少した影響であると考えられる。

補正値は、大小関係でバラつきはあるが、現場測定値 と概ね同じ値を示す傾向がある。この傾向は、細粒分含 有率に関わらず認められた(図-5)。

図-4 湿潤密度の現場測定値、室内試験値、補正値の比較

図-5 各試料の細粒分含有率

参考として、湿潤密度試験の供試体毎の含水比を図-6 に示す。試験に使用した供試体のサンプリングチューブ 内での位置により含水比が異なる傾向がある。これは、 凍結前の間隙水の排水ムラを反映していると考えられ、 室内試験値、補正値に影響している可能性がある。

今回、排水時間を約24時間としたが、より長い時間排 水することで、排水ムラは小さくなると推定される。今 後、よりよい比較検討をするために排水時間を検討する 必要があると考えられる。

図-6 供試体毎の含水比

4. まとめ

今回、地下水以深の砂質土試料の湿潤密度について、 現場測定値と飽和度を100%として補正した値は、細粒分 含有率に関係なく、概ね近い値を示す傾向が確認された。

このことから、地下水位以深の砂質土試料について、 湿潤密度を早急に把握したい場合には、現場測定値を参 考値として使用できる可能性があると考えられる。

ただし、今回検証した試料数が13試料と少ないこと、 試料の排水ムラが試験値に影響している可能性があるこ とから、使用の際には注意が必要である。

今後、砂質土試料の湿潤密度について、現場測定値と の比較を蓄積し、排水、凍結の影響について考察を深め たいと考えている。

- (社)地盤工学会:地盤材料試験の方法と解説[第一回 改訂版], p.199-209, 2020.12.
- 2)(社)地盤工学会:地盤調査の方法と解説,p.201-208, 2013.4.

				_	172 - 14			~						
	試料番号	1	2	3	4	5	6	7	8	9	10	11	12	13
	含水比 w _n (%)	31.7	33.7	32. 2	24.6	27.8	27.4	18.6	26.2	34.2	32.7	25.3	29.3	28. 2
泪潮密度	現場測定値	1.826	1.881	1.926	2.010	1.880	1.901	1.873	1.900	1.936	1.826	1.922	1.949	2.029
ρ_t	室内試験値	1.720	1.790	1.747	1.866	1. 782	1.751	1. 788	1.696	1.763	1. 780	1.882	1.805	1.825
(g/cm ⁻)	飽和度100%とした補正値	1.819	1.844	1.829	1.951	1.876	1.869	1.944	1.851	1. 827	1. 832	1.954	1. 909	1.903
	乾燥密度 ρ _d (g/cm³)	1.306	1.339	1.322	1.497	1.394	1.376	1.486	1.344	1.315	1.36	1.503	1. 387	1.426
	土粒子の密度 ρ _s (g/cm ³)	2.687	2.705	2.684	2.746	2.691	2.72	2.737	2.729	2.702	2.715	2.74	2.659	2.734
	間隙比 e	1.059	1.020	1.031	0.836	0.930	0.978	0.815	1.031	1.057	1. 024	0.825	0.905	0.921
	飽和度 S _r (%)	80.6	89.4	83.7	81.5	80.6	75.8	61.9	69.4	87.4	86.5	84. 0	85.4	83.0
	細粒分含有率 Fc (%)	24. 3	8.7	30.0	5.7	7.1	20. 1	6.5	12.6	7.6	6.2	8.7	8.6	7.3
	分類名	粘性土質砂	粘性土 まじり砂	粘性土質砂	粘性土 まじり砂	粘性土 まじり砂	粘性土質砂	粘性土 まじり砂	粘性土 まじり砂	粘性土 まじり砂	粘性土 まじり砂	粘性土 礫まじり砂	粘性土 まじり砂	粘性土 まじり砂
	分類記号	(SCs)	(S-Cs)	(SCs)	(S-Cs)	(S-Cs)	(SCs)	(S-Cs)	(S-Cs)	(S-Cs)	(S-Cs)	(S-CsG)	(S-Cs)	(S-Cs)

表-1 物理試験結果一覧表

コーン指数に寄与する因子について

協同組合 関西地盤環境研究センター (

○李 俊憲,服部 健太 松川 尚史,中山 義久

1. はじめに

地盤の強さを表す指標の一種であるコーン指数 qc(kN/m²)は、一般的に宅地盛土等の品質管理¹、建設機械 のトラフィカビリティーの指標²、また、建設工事で発生 する建設発生土の土質区分³⁾の分類等に利用されてい る。このように、コーン指数を用いた土質区分基準や強 度基準値は規定されているものの、コーン指数に寄与す る因子については研究事例が数少ないのが現状である。

そこで、実現場で施工実績がある多様な試料を用いて 含水比、粒度分析、乾燥密度等に着目し、どのような因 子がコーン指数に影響を与えるのかについて報告する。

2. 土試料

本研究で用いた試料は、図-1にプロットされる粒度特 性を持つ120個である。また、火山灰粘土、有機質粘土等 の特殊土を除いた試料(粘性土から礫質砂まで)であり、 粒径幅が広い試料や分級された試料も含まれる。

図-1 試料における三角座標

3. 試験方法および試験装置

室内試験は、土粒子の密度試験⁴⁾ (JIS A 1202-2009)、 土の粒度試験⁴⁾ (JIS A 1204-2009)、土の液性限界・塑性 限界試験⁴⁾ (JIS A 1205-2009) および締固めた土のコーン 指数試験⁴⁾ (JIS A 1228-2009) に準じて実施した。締固め た土のコーン指数試験の供試体は、4.75mm ふるいを通 過した自然含水比状態の試料を用いて JIS A 1210の突固 め方法の呼び名 A (2.5kg ランマー落下高30cm、各層25 回/3層突固め) によって作製した。

一方、図-2にはコーン指数試験装置を示している。試 験装置は、荷重計、変位計、ロッド、先端コーンから構 成され、供試体はモーターで下から上に持ち上げる仕組 みになっている。試験方法としては、供試体につり下げ たコーンの先端が供試体上端中央部に鉛直に立てるよう に調整した。その後、1cm/sの速度でコーンを貫入させ、 先端コーンの貫入深さが5cm、7.5cm および10cm の時の 荷重を読み取り、平均貫入抵抗力(Qc)から式-1により、 コーン指数(qc)を求めた。ここで、A はコーン先端の底 面積である。

$q_{\rm c}(\rm kN/m^2) = Qc(\rm N) \div A(\rm cm^2) \times 100 \quad (\it tt-1)$

図−2 コーン指数試験装置

4. 試験結果および考察

試験から求めた全試料の湿潤密度(ρ_t)とコーン指数 (q_c)の関係を図-3に示している。q_cは湿潤密度が大きく なるにつれ、大きくなる傾向を示しているが同様な湿潤 密度であっても q_cのばらつきが段々大きくなっている。

それは、それぞれの試料が持つ含水状態、つまり飽和 度と強度に関係していると考えられる。そこで、含水比 の影響を除くため、飽和状態である供試体のみを考察し た。本論文では、それぞれの試料における飽和度が90% 以上であれば飽和していると見なした。

飽和状態 ($S_r \ge 90\%$)の試料の数は60個である。図-4~ 図-8は、飽和状態における q_c と乾燥密度 ρ_d 、細粒分、砂 分、礫分、塑性指数の関係を示している。対象とした試

料は試料分類名に関係なく全ての q_c が1000kN/m²以下に なることが分かった。図中のオレンジ色は、 q_c が200以上 ~1000kN/m²以下で、青色は、 q_c が200kN/m²未満を示して いる。図-4の $q_c \ge \rho_d$ の関係では、 q_c が200kN/m²以上の場 合、 ρ_d が増加するにつれ、ばらつきはあるが q_c は増加す る傾向を示している。しかし、 q_c が200kN/m²未満では、 $\rho_d \ge q_c$ の関係は低かった。図-5の $q_c \ge$ 細粒分の関係で は、 q_c が200kN/m²以上の場合、細粒分が約20%~40%間 で、 q_c は最も大きい値を示すが細粒分が40%以上では、 ばらつきはあるが減少する傾向を示している。

しかし、 q_c が200kN/m²未満では、細粒分と q_c の関係は低かった。図-6の q_c と砂分の関係では、 q_c が200kN/m²以上の場合、砂分が増加すると q_c は増加する傾向を示すが、 q_c が200kN/m²未満では、砂分と q_c の関係は低かった。

図-7の qc と礫分の関係では、qc のばらつきが多きいこ とから砂分と qc の関係は低かった。図-8の qc と h の関 係では、qc が200kN/m²以上の場合、ばらつきはあるが h が10~20間で、qc 最も大きい値を示し、h が増加すると qc は減少する傾向を示す。一方、qc が200kN/m²未満では、 I p と qc の関係は低かった。qc が200kN/m²未満で、それぞ れの因子と qc との関係が低かった原因として確かでは ないが、試料に突固めを実施しても締固まりづらい状態 での貫入抵抗力は小さく、その影響でばらつきが大きく なったと考えられる。その理由で、土質区分に対応した 適応用途標準³⁾でも、適切な土質改良を行う必要がある ことを指摘したと考えられる。

5. 結論

試料におけるコーン指数と飽和状態、礫分、砂分、細 粒分、乾燥密度および塑性指数との関係をまとめると (1) 飽和状態を考慮しない場合には、湿潤密度が増加す ると q_c も増加する傾向であるがばらつきが大きい。 (2) 飽和状態 ($S_r \ge 90\%$) では q_c は試料分類名に関係なく q_c が1000kN/m²以下になる。

(3) q_c が200kN/m²未満では、 ρ_d 、細粒分、砂分、礫分、 I_P と q_c との関係は低かった。

(4) q_c が200kN/m²以上では、明確ではないが ρ_d 、細粒分、 砂分、 $I_P \ge q_c \ge 0$ 関係性がある。

- 宅地防災研究会:宅地防災マニュアルの解説(I),第二 次改訂版, pp.125-178, 2007.
- 日本道路協会編:道路土工要綱(平成21年度版), p.287,2009.
- 3) 土木研究センター編:建設発生土利用技術マニュアル (第4版), pp.27-35, 2013.
- 4) 地盤工学会 地盤調査法改訂編集委員会: 地盤材料試 験の方法と解説―二分冊の1―, 社団法人 地盤工学 会, 2009.

各種圧密試験による圧密特性の比較

基礎地盤コンサルタンツ㈱ 〇上野 佑基, 深井 晴夫, 島田 徹也, 荘 徳泉

1. はじめに

大阪湾周辺には鮮新世~更新世に堆積した土砂層が広 く分布し,砂礫と粘土が互層状に厚く何層にも堆積して いる.関西国際空港やポートアイランドはこのような海 底地盤上に造成され,長期的な圧密沈下現象が継続して いる.本報告は大阪湾に位置するA海域で洪積粘性土を 対象に乱れの少ない試料を採取し,段階載荷による圧密 試験の他に繰返し多段階圧密試験,及び定ひずみ速度載 荷による圧密試験を実施し,試験方法による試験結果の 差異を比較した.さらに圧密沈下解析を実施し,圧密試験 方法による沈下量や沈下時間の差異を比較した.

2. 試料採取

大阪湾沿岸部の地質断面図を図-1に示す. 海底面付近 には完新世に堆積した非常に軟弱な沖積粘性土層(Ma13) が分布し,Ma13以深は鮮新世~更新世に堆積したDg層と 海成粘性土層 Ma1~12が互層状に分布する.本研究では Dg 層内に分布する Dc 層及び Ma11層を対象にロータリ ー式二重管サンプラーにより乱れの少ない試料を採取した.

図-1 大阪湾沿岸部の地質断面図¹⁾に加筆

3. 物理特性

表-1に Dc 層及び Ma11層の物理試験結果一覧を示す.

	12 12	一王山八河大		見双		
	地層記号			Dc		Mall
	試料番号		試料A	試料B	試料C	試料D
中心	標高	(CDL m)	-37.40	-38.40	-38.90	-48.40
土粒子	の密度	(g/cm^3)	2.699	2.688	2.718	2.689
自然言	含水比	(%)	48.1	44.6	49.0	64.0
	礫分	(%)	0.0	0.0	0.0	0.0
	砂分	(%)	1.2	13.7	0.7	1.1
松库	シルト分	(%)	41.0	33.9	48.4	30.8
松皮	粘土分	(%)	57.8	52.4	50.9	68.1
	細粒分含有率	(%)	98.8	86.3	99.3	98.9
	平均粒径	(mm)	0.0031	0.0043	0.0048	0.0022
72/2/7	液性限界	(%)	69.0	71.1	67.4	94.6
コンシス	塑性限界	(%)	23.3	23.8	21.9	29.1
/ / / / -	塑性指数		45.7	47.3	45.5	65.5
湿潤	密度	(g/cm^3)	1.734	1.762	1.732	1.617
萨榀	宓	(/ 3)	1 171	1 910	1 169	0.006

表−1 物理試験結果一覧表

Mal1と Dc では Mal1層の方が Dc 層より粘土分含有率 が多く,含水比が高い結果が得られた.また Mal1層の方 が小さな湿潤密度及び乾燥密度が確認された.

4. 圧密試験

(1) 圧密試験概要

Dc 層及び Ma11層を対象に,同一深度の試料を用いて段 階載荷による圧密試験,繰返し多段階圧密試験,定ひずみ 速度載荷による圧密試験を実施した.一般的に洪積粘性 土を対象に段階載荷による圧密試験を実施した場合に以 下の2点が問題となる.一つは土中の深くで採取した試料 を用いることから,少なからず応力開放の影響を受ける ことである.この点の解決策としては圧密試験前に有効 土被り圧まで載荷し,一旦除荷した後に再度載荷をする ことで応力開放の影響を削除出来ると考えた.二つ目の 問題点としては,洪積粘性土は比較的圧密降伏応力が大 きいため,段階載荷による圧密試験では荷重ピッチが粗 くなり,圧密降伏応力の設定精度が低くなることである. この点の解決策としては,通常よりも細かいピッチで載 荷する,又は連続的に載荷することで e-logP 曲線の屈曲 をより明確に出来ると考えた.

(2) 圧密試験条件

表-2に圧密試験条件を示す.載荷条件以外については 全て同様の条件を設定した.

表-2 圧密試験条件

	供試体		15 7 A 14	
圧密試験名 直径 高さ		高さ	載何条件	
段階載荷による 圧密試験	6cm	2cm	荷重増分比1にて段階的に載荷する。1段階における載荷 時間は24時間とする。	
繰返し多段階 圧密試験	6cm	2cm	以下①~③の順番・手順にて載荷・除荷する。 ①有効土被り圧付近まで載荷(荷重増分比1) ②降荷(①と同様のビッチで除荷) ③再び載荷(商重増分比1, 圧密降伏応力付近より0.5) なお1段階における載荷時間を24時間とする。	
定ひずみ速度 載荷による 圧密試験	6cm	2cm	0.01%/minで連続的に載荷する。	

(3) 圧密試験結果

図-2に圧密応力と間隙比の関係図を示す.繰返し多段 階圧密試験では,過圧密領域における傾きが小さい傾向 が確認された.

図-3に平均圧密応力と体積圧縮係数 mv の関係図を示 す.繰返し多段階圧密試験では,過圧密領域において mv が小さい傾向が確認された.

図-4に平均圧密圧力と圧密係数 Cv の関係図を示す. 定ひずみ速度載荷による圧密試験で得られた Cv は相対 的に小さい傾向が確認された.

表-3に圧密降伏応力と圧縮指数の一覧表を,図-5に圧 密降伏応力の深度分布図を,図-6の圧縮指数 Cc の深度分 布図を示す.段階載荷による圧密試験では相対的に圧密 降伏応力 Pc が小さく求められる傾向が確認された.圧 縮指数は概ね段階載荷<繰返し多段<定ひずみの関係が 確認された.

	地層記号	1		Mall		
	試料番号	1	試料A	試料B	試料C	試料D
中心標高 (CDL m) -			-37.40	-38.40	-38.90	-48.40
100000	D	段階載荷	616.8	602.6	548.5	627.5
上 密 降 伏	PC	繰返多段階	621.7	603.6	572.8	629.4
ルいフリ	(KIN/M)	定ひずみ	643.5	579.0 658.3		648.5
		段階載荷	0.910	0.807	0.711	1.203
圧縮指数	Cc	繰返多段階	1.045	0.930	1.052	1.849
		定ひずみ	1.285	1.143	1.378	1.955
0 10 (〒-20) (〒-20) (〒-3) (田) (田) (田) (田) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	200 400 200 400 ● 標 ● 標 ● 標 ● 標 ● 標 ● 標 ● 標 ● 標	m ⁷) 600 800 がは被り圧 変に変 反し多段階 リザみ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.0 0 10 10 10 10 10 10 10 10 10	上和和此 0.5 1.1 ・標準圧空 ●練返し受 ▲定ひずみ Dc ● Ma11	82 0 1.5 F99階 ●▲▲▲ €分布図	2.0

表-3 圧密降伏応力及び圧縮指数一覧

5. 圧密沈下解析

これらの圧密試験から得られた結果を用いて仮想モ

デルにて圧密沈下解析を∠e 法にて実施した.荷重条件 としては,過圧密領域内のものと正規圧密領域内の2種類 とした.図-7に過圧密領域内の荷重による経過日数と沈 下量の関係を,図-8に経過日数と圧密度の関係を示すが, 最終沈下量は24cm~47cmと予測された.また圧密度80% までの経過日数については1.6~7.2年と予測された. 次に荷重を正規圧密領域に達した場合について計算した ところ,最終沈下量は577cm~760cm,圧密度80%までの経 過日数は21.0~24.2年と予測された(図-9,図-10).

6. まとめ

①圧密降伏応力及び圧縮指数については概ね以下の関係 が示されたが、引き続きデータを蓄積し他の試料でも 検証する必要があると考えられる。

圧密降伏応力 Pc:標準圧密≤繰返し多段<定ひずみ圧縮指数 Cc:標準圧密<繰返し多段<定ひずみ

②荷重条件により異なるが,過圧密領域では試験法によ る沈下量や沈下時間が倍・半分の差が確認された.

《引用·参考文献》

1)大阪湾地盤情報の研究協議会:ベイエリアの地盤と建設
 一大阪湾を例として-,pp口絵10,2002.12

[061]

Torsion Wave 方式の Vs アクチュエータを内蔵した中空ねじり試験装置

基礎地盤コンサルタンツ株式会社 〇中村 李緒音,山田 眞一

1. はじめに

近年地盤より採取した乱れの少ない試料の品質を評価 する方法として原位置で測定されたS波速度と室内のそ れとを比較する手法の問い合わせ,依頼が増加している. 中空ねじり試験においても同様である.

そこで,三軸試験用に開発した Vs, Vp 圧電アクチュエ ータ¹⁾を中空ねじり試験仕様に改造した.本報告は同装 置の概要及び,同装置を用いて実施した S 波速度測定結 果である.

2. 試験方法

(1) 試験装置

中空ねじり試験装置のシステム図を示す(図-1,写真 -1). 図に示すようにセルのキャップ内にS波, P波用の圧 電アクチュエータを内蔵し、供試体の上端に Torsion Wave(せん断波)(S波)あるいは鉛直(P波)衝撃を加える. その振動を供試体の下端のペデスタルに内蔵された加速 度計により感知し、その波動の伝播時間と供試体の高さ からS波速度VsおよびP波速度Vpを求めている.

(2) 試験方法

①試料:豊浦砂 D_r=50,90% ②供試体寸法:外径70mm,内径30mm,高さ70mm ③飽和,排水条件:B值>=0.95,背圧=100kN/m² ④Vs, Vp トリガー波形:矩形波 ⑤応力条件:等方応力状態.詳細を図-2,表-1に示す. ⑥供試体作製方法:5層湿潤締固め

3. 試験結果

(1) 図-3に Vs, Vp の測定例を示す. 図からわかるように Vs, Vp 及びトリガーの各波の立ち上がりを明確に把握で きる.

(2) 図-4に Vs-σ。'の関係を示す. 記号○□は載荷, ●■ は除荷した際の Vs の測定結果を示している. Dr=50%につ いては、載荷方向と除荷方向のσ, の相違による Vs の 違いはほとんど見られなかった.一方 Dr=90%では,除荷方 向のσ。'=100,70,50,30kN/m²では載荷方向のそれより Vs が高めに出る結果となった.これは一度 σ_{c} = 400 kN/m² まで載荷した後に除荷したことから過圧密状態になった ことが原因であると考えられる.Dr=50%については明確 な事はいえないが,湿潤締固めによって作製された緩く 不安定な初期構造が圧密により破壊され,密実化による Vsの増加と相殺されたのかもしれない.

(3) 図-5に三軸試験と中空ねじり試験の Vs-σ, の関係 を示す. Dr=50,90%とも多少のばらつきはあるがほぼ同 一の傾向であり、Vs の差は Dr=50,90%ともに最大でも10%

写真-1 試験状況

図-2 応力経路

程度である.供試体作製方法は同一であるが供試体形状 (円柱状と円筒状)による締固め条件の影響も少なくな い.以上のことを考慮しても,全体的にみれば三軸試験と 中空ねじり試験の Vs に大きな相違は見られなかった.

4. まとめ

中空ねじり試験機で Vs を測定した結果, 三軸試験機の それとほぼ同等の結果を得ることができた. 今後, 二連式 中空ねじり試験装置に同装置を導入し, 乱れの少ない試 料への適用上の問題点の有無を検討する予定である.

	$\sigma_{\rm a}$ ' (kN/m ²)	$\sigma_{\rm r}$ ' (kN/m ²)
1	30	30
2	50	50
3	70	70
4	100	100
5	150	150
6	200	200
$\overline{7}$	400	400
8	200	200
9	150	150
10	100	100
(11)	70	70
(12)	50	50
(13)	30	30

図-3 Vs,Vpの測定例

図-5 三軸試験と中空ねじり試験の比較

《引用·参考文献》

 田中 猛,山田 眞一:「Torsion Wave 方式の Vs アクチュ エータを用いた様々な応力条件下の S 波速度」,全地連技 術 フォーラム 2015 論 文集,論 文 No.010,2015.9. <u>https://www.zenchiren.or.jp/e-Forum/2015/PDF/2015-</u> 010.pdf (確認日:2021.5.31)

多段階三軸圧縮試験結果による地盤定数設定の適用

サンコーコンサルタント(株) 〇西薗隼太朗, 平木伸明, 内田昇一

1. はじめに

設計のためのボーリング調査は、単位体積重量、せん 断定数(c, φ)、変形係数など、地盤定数の設定が求められ る。その設定方法として、室内試験や原位置試験の試験 値、N値からの推定値、一般値を参考とする方法が一般 的である。土質地盤のせん断定数(c, φ)は、「乱れの少な い試料採取」によるサンプリング試料を用いて、三軸圧 縮試験(JIS 規格)を行うこと多い。一方、亀裂性岩盤の せん断定数(c, φ)では、無亀裂の供試体から求めたせん断 力を亀裂係数で低減して地盤定数を設定する方法がある。 しかし、この亀裂係数は、地山の弾性波速度と供試体(無 亀裂)の超音波速度から求めるため、弾性波探査,超音 波測定が必要となってくる。このため、岩種・岩級区分 別の推定値(一般値)から設定することが多い。それ以 外の室内試験としては、JIS 規格でないものの、亀裂性の ボーリングコアを用いた供試体で実施する多段階三軸圧 縮試験がある。この試験は、亀裂性のボーリングコアを 成形した供試体で実施することから、他の試験等を必要 とせず直接的に地盤定数を求めることができる。今回は、 多段階三軸圧縮試験結果をまとめた事例について示す。

2. 多段階三軸圧縮試験方法

(1) 試験準備(供試体成形~B 値測定)

試験に供する試料について亀裂面がずれないように端 面カット,研磨を施した供試体の密度を測定し、三軸室 に設置する。CUB条件で試験を実施する場合、供試体の 飽和を行った後 B 値を測定する。

(2) 圧密~載荷

所定の圧密圧力で1段階目の圧密を実施した後、載荷 を行い圧縮力のピーク直前で除荷を行う(載荷時には圧 縮力及び間隙水圧(UU,CU,CUB)の変動を直視しながら 進める)。次に2段階目のB値測定をした後、圧密圧力 を上乗せし、1段階目と同様に載荷を実施する。最終段 階までこれらを繰り返し(通常は3~4段階)、最終段階 は供試体が破壊するまで載荷を行ってピーク強度を求め る。残留強度を測定する場合、供試体破壊後の軸圧縮力 が一定となるまで載荷を続けた後除荷を行う。段階毎の ピーク強度の測定を逆に辿って圧密圧力を減少させて圧 密(減圧)・載荷・除荷を繰り返す。試験結果の例を、図・1に 示す。

(3) 試験の注意点

亀裂が多い試料で試験をする際、供試体の作成が非常 に困難である。そのような場合、スリーブを残したまま ビニールテープで被覆して成型する。時には凍結させて の作成も行う。成型した供試体を凍結させて試験機に設 置する場合もある。現場でコア採取した時点で試験に供 する部分の保護が大切で、できれば現場でスリーブの上 からビニールテープを巻いておき、必要部分を切断して 運搬する。供試体作成時にも最大限の注意もって行う。 亀裂面のズレを極力無くすことが重要である。

また、載荷時のピークの見極めも非常に難しい。各段 階の載荷後にB値が下がってしまうことがある。供試体 外部と通じていなかった微小の空隙が、載荷によって亀 裂が増し、外部と通じて飽和度が下がるため間隙水圧が 下がってしまうと考えられる。またその場合、有効応力 でのモールの漸近線の傾きが小さくなる。¹⁾低速度での 載荷や、前述した圧縮力と間隙水圧の変動の注視が非常 に大切である。段階ごとに再飽和を行うことで多少は飽 和度を上げられるが、その場合亀裂面がずれてしまう恐 れがあるので注意が必要となる。また、載荷時に生じた 亀裂には対応できないため、将来的には何らかの方法で 補正方法を求めておく必要がある。

3. 多段階三軸圧縮試験結果の例

様々な岩種(堆積岩)の全応力(ピーク強度)を岩級 区分ごとに整理した(写真-1~写真-3)。なお、亀裂性の 供試体が対象であるため、岩級区部は、D級,CL級,CM 級である。

写真-1 多段階三軸圧縮試験前後の供試体(D級)

写真-2 多段階三軸圧縮試験前後の供試体(CL級)

試験前 試験後 写真-3 多段階三軸圧縮試験前後の供試体(CM級)

それぞれの岩級区分における粘着力 C を図-2に、岩級 区分-内部摩擦角φを図-3に示す。

この図には、一般値として、粘板岩のダムサイトにお ける測定例を併記した。

図-3 岩級区分-内部摩擦角φ

4. まとめ

本試験結果を見ると、おおよそ一般値と近しい結果が 得られているが、直接的に得られたデータであるため過 大設計になることを防ぐことができる。また、本試験は 一本の供試体から複数の試験結果が得られるため時間 的、経済的に有利である。

- 小高猛司:第5回 中部支部 地盤力学・工学講習会(初 級編③)「せん断」名城大・小高 【土の破壊基準(垂 直応力とせん断応力の重要性)】,2009.9.
- 2)(株)高速道路総合技術研究所:中日本高速道路株式会社設計要領 第二集 橋梁建設編,2014.7

石灰系固化材添加後の養生時間が地盤材料特性に及ぼす影響

中部土質試験協同組合 〇伊藤 康弘,法安 章二 清水 亮太,伊吹 卓紘

1. はじめに

石灰系固化材による安定処理は関東ロームなどの高含 水比の土に対して行われることが多く、その主な目的と して含水比の低下と強度増加が挙げられる.室内試験に おいて,生石灰を用いた安定処理の場合では,吸水効果に より含水比の著しい低下が見込まれる反面,添加量によ っては試料が非常に高温になるため,取り扱う際に危険 を伴う.養生時間の目安は長くとも24時間以内とされて いるが¹⁾,試料の含水比や添加量によっても異なるため, 試料の温度から消化の進行具合を推し量る必要がある.

本研究では, 典型的な粘性土に対して生石灰を添加し, 仮置き養生時間を変えることで試料の締固め特性および 一軸圧縮強度に与える影響について比較を行った.

2. 試験条件

(1) 試験に用いた試料

青粘土の含水比を液性限界近傍になるように調整し、 0~5mm 以下の粉状または粒状の生石灰を湿潤土に対し て200kg/m³となるように粉体添加した.本研究で用いた 青粘土の物性値を表-1に示す.

衣 月柏上の初注値	表-1	青粘土の物性値
-----------	-----	---------

十粒子の密度	全水比	<u>+</u> 粒度 (%)			液性限界	朔性限界
$\rho_{\rm s}$ (g/cm ³)	w (%)	砂分	シルト分	粘土分	w _L (%)	w _p (%)
2.758	41.0	10.0	51.7	38.3	42.6	19.8

(2) 練り混ぜおよび仮置き養生時間

青粘土と生石灰を約1分間と約2分間の2回に分けて合 計約3分間練り混ぜた後,室温約20℃の部屋で仮置き養生 を行った.仮置き養生する際は外気の影響を避けるため に容器内に試料を広げ,袋の中に入れて密封した.仮置 き養生の時間が0,1,3,6,24,168時間の6種類の試料 を用意した.

(3) 試料温度と含水比の経時変化

練り混ぜ直後の試料は非常に高温になり、含水比が著 しく変化する.そこで、仮置き養生中の試料の温度と含 水比がどのように変化するか計測を行った.

(4) 締固め試験および一軸圧縮試験

試験工程を図-1に示す.まず,所定の仮置き養生の時 間経過後に締固め試験(A-c法)を実施した.締固め試験 で作製された各含水比での供試体をモールドから取り出 してから空気中で7日間養生し,一軸圧縮試験を実施し た.なお,生石灰による安定処理を行うと供試体を膨張さ せる可能性があることから,一軸圧縮試験を実施する際 に供試体の体積を測定し,7日間養生前の供試体の体積 から体積膨張比を算出した.

3. 試験結果

(1) 試料温度と含水比の経時変化

試料温度と含水比の経時変化を図-2に示す. 試料の温 度に着目すると,仮置き養生開始時には約75℃まで発熱 していることが見て取れる.また,仮置き開始から約5分 間で急激に温度が低下し,それ以降は緩やかに温度が低 下していることが確認できる.

次に、含水比に着目すると、仮置き養生開始から約5分間で急激に含水比が低下していることが分かる.また、 それ以降で含水比の低下が緩慢になることから試料温度 と同様の傾向を確認することができる.

図-2 試料温度と含水比の経時変化

(2) 締固め試験結果および一軸圧縮試験結果

各試料の締固め曲線を図-3に示す.仮置き養生の時間 が長いほど最大乾燥密度が小さく,最適含水比が大きく なる傾向が確認できる.また,仮置き養生時間が6時間を 経過した頃から類似した締固め曲線が得られていること が分かる.

次に、含水比と一軸圧縮強度の関係を図-4に示す.仮 置き養生0時間の試料に着目すると、一軸圧縮強度が全体 的に低く、強度のばらつきが大きいことが見て取れる.ま た、各試料の初期含水比における一軸圧縮強度を比較す ると、仮置き養生1、3時間の試料は仮置き養生時間をそ れ以上長くした試料に比べて強度がやや低い傾向にある ことが分かる.加えて、仮置き養生を6時間以上行った試 料はほぼ同程度の強度が得られていることが分かる. 仮置き養生0時間の試料について,初期含水比における 供試体の様子を写真-1に示す.写真-1を見ると,供試体 にひび割れが多数生じていることが確認できる.また, 各試料の平均体積膨張比を図-5に示す.仮置き養生0時間 の供試体の平均体積膨張比は約1.07であり,顕著に膨張 していることが分かる.その中でも初期含水比における 体積膨張比は約1.12で最大値となり,その際の一軸圧縮 強度は最小値となった.一方,仮置き養生1時間以上の供 試体に着目すると,大きな膨張は見られず,時間経過と ともに体積膨張比が小さくなる傾向が確認できる.

図-4 各試料の含水比と一軸圧縮強度の関係

写真-1 供試体の状況(仮置き0時間)

図-5 各試料の平均体積膨張比

4. 考察

(1) 試料温度と含水比の経時変化

生石灰を添加することで土中の水分と生石灰(Ca0)が 反応を起こし,消石灰(Ca(OH)₂)が生成される.この反応 で,土中水が水和水として取り込まれ,かつ発熱反応に より蒸発することで試料の含水比を大きく低下させてい る.この反応は消化吸水反応²⁾と呼ばれ,以下の式で表さ れる.

CaO+H₂O=Ca(OH)₂+1.17MJ/kgCaO

はじめに述べた通り,消化の進行具合は試料の温度で 推定することが必要となる.図-2を見ると,仮置き養生 開始から約5分までに含水比が著しく低下していること から,消化吸水反応が非常に短期間で生じることが確認 できる.試料の温度のみに着目すれば,仮置き養生時間を 10分程度で取り扱いやすい温度まで落ち着くが,締固め 特性と一軸圧縮強度を見れば,養生時間として不十分で あることが分かる.

(2) 締固め試験結果および一軸圧縮試験結果

仮置き養生の時間を増やしていくと、締固め曲線は消 化吸水反応によって生成された水和化合物が時間経過と ともに増加していくので、最大乾燥密度が小さくなる、締 固め特性は仮置き養生6時間以上の場合に概ね定常とな ることが分かった.

また,消化が十分に進行していない状態で供試体作製 を行うと,膨張によって供試体がひび割れしてしまい, 一軸圧縮強度を著しく低下させる要因となることが分か った.仮置き養生6時間以上の供試体では一定の強度が得 られ,値のばらつきも小さくなった.締固め試験結果との 関係性からも仮置き養生時間が少なくとも6時間は必要 であることが分かった.

5. まとめ

本研究では、青粘土に対して生石灰を添加し、仮置き養 生時間を変えることで試料の締固め特性および一軸圧縮 強度に与える影響について比較を行った.その結果、仮置 き養生を6時間以上とすれば、消化が十分に進行し、締固 め特性および一軸圧縮強度への影響が小さくなることが 分かった. 消化の進行具合は試料の種類や含水比、添加 量によっても異なるため、温度によって推定することが 重要となる.試料温度は仮置き養生を開始してから短時 間で取り扱いやすい温度まで低下するが、試料温度のみ で判断せず、地盤材料特性への影響を十分に留意する必 要がある.

- 1) 地盤工学会:地盤材料試験の方法と解説-二分冊の1, p. 433, 2020.
- 2) 日本石灰協会:石灰による地盤改良マニュアル, pp. 7~35, 2012.

不等分布荷重下における類岩材料の力学特性と

AE 特性に関する研究(その2)

基礎地盤コンサルタンツ(株) 黄 はお

1. はじめに

近年、アコースティック・エミッション (AE) 技術は 岩石力学問題の解決に広く応用されている。不等分布荷 重下における岩石の力学特性と AE 特性を解明するため に、既往(その1)¹⁾の研究によって初期鉛直応力が大き くなると岩石材料の強度ピークおよび破壊ひずみが小さ くなる傾向が現れた。さらに最大発生数が少なく、最大 発生数出現までが早くなることが分かった。本研究では、 岩石の力学特性及び AE 及び岩石損傷関係を深く理解す るために、AE 計測器及び採動応力測定システム¹⁾を使用 して一連のシミュレーション実験に対する測定を行っ た。その結果を用いて対象試料の力学特性と AE 特性を 比較することにより、異なる試験条件の影響を分析し、 岩石の力学特性と AE 特性の検討を行った。

2. 試験システム、試料及び試験方法

本研究で使用した採動応力測定システムは図-1に示す ように、垂直方向及び水平方向に荷重を載荷する機構を 備えて、初期の垂直応力を変化させることで、異なる深 度での岩石(炭鉱)の採掘状態をシミュレートすること ができる。AE 計測器は図-2に示す。この装置は力学試験 中に試料が損傷と破壊の過程で生じた AE を測定するこ とができる。

試料は石膏と水を2:1の割合で混合し作製した(その 1の研究試料と同じである)。試験試料は300mm×150m m×150mmの直方体で、これを図-3に示すA、B、Cの 3領域に分け、それぞれを縦方向応力 P1、P2、 P3に対応 するブロック断面とした。

本試験は平均的な地盤の密度を2000kg/m³と仮定して、 表-1に示す3種類の初期垂直応力条件を採掘深度(200m、 300m、400m)に対応する4、6、8MPaに設定して、実施 した。試験中応力荷重率は0.067、0.200、0.333MPa/sと し、また、A領域とB領域の初期水平応力は4MPa、ひず み速度は0.5 mm/min を設定した。載荷中に AE の連続観 測を行った。

図-1 試験装置

図-2 AE 計測器

図-3 試料体

表-1	初期垂直応力条件

ケース	初期垂直応力(MPa)	応力増加率(MPa/s)
#1	4	0.067
#2	6	0.067
#3	8	0.067
#4	4	0.2
#5	6	0.2
#6	8	0.2
#7	4	0.333
#8	6	0.333
#9	8	0.333

3. 力学特性試験結果

その1研究で初期垂直応力は、岩石系材料のピーク強度 とピークひずみの両方に影響を与えることが分かった。 本研究で岩石の力学的特性をよりよく分析するために、 応力増加率の影響を分析した。

図-4に示すように、初期の垂直応力が一定の場合、領 域Aと領域Bの両方で応力増加率の増加に伴ってピーク 強度が増加する。岩石の損傷の程度と形態は、異なる応 力増加率で異なる。応力増加率が増加すると、岩石にか かる応力がより強く作用するようになり、岩石への瞬間 的な損傷が大きくなる。そして、応力増加率の変化が領 域AとBのピーク強度に与える影響は異なることがわか った。

図-5は、異なる応力増加率で領域AとBのピークひず みがどのように変化するかを示す。初期垂直応力が一定 の場合、領域A、領域Bともに、応力増加率の増加とと もにピークひずみが減少する。その理由は、応力増加率 が高いほど、岩石にかかる瞬間的な応力が大きくなり、 岩石があまり変形せずに損傷するためである。同じ初期 垂直応力条件下では、ピークひずみと応力荷重率の曲線 の傾きが異なる。そして、応力増加率の変化は、領域A とBのピークひずみに異なる影響を与えることが明らか になった。

4. AE 特性に基づく岩石損傷分析

材料損傷を力学変数によって表現しようとする損傷理 論は Kachanov によってはじめて提案された²⁾。その後 Rabotnov(1969)は"Damage variable"(損傷変数)を使用 し、材料の内部劣化の状態を力学的に示した。その1研究 では、AE のヒットパラメータが損傷変数 D の解析に使用 できることを示した¹⁾。表-2にA 領域とB 領域の AE の最 大発生数とその発生時間を示す。この結果を用いて応力 -時間-AE 発生数を図示する事によりその特徴的な傾向 を確認することができた。

ケース	最大ヒット数		発生時間/s	
	Region A	Region B	Region A	Region B
#1	3350	1939	153.6	569.6
#4	1411	1080	62.4	212.2
#7	853	579	40.8	117.6

表-2 AE の最大ヒット数とその発生時間

表-2のデータから初期垂直応力と応力増加率が固定さ れている場合に、領域Aの最大AEヒット値は、領域Bの 値の約1-2倍になったことが分かった。図-6、図-7、図-8に示すように、不等分布荷重下におけるケース1、ケー ス4、ケース7の領域AとBの損傷変数で損傷の進化を表 示されている。損傷変数に基づいて、領域Aは領域Bよ りも早く損傷し、ピーク応力段階でのダメージ加速度の 度合いが大きくなった。また、初期垂直応力が一定で、 応力増加率が増加すると、領域Bの損傷率は徐々に増加 し、領域Aの損傷変動曲線の形状は大きく変化しなかっ たことが分かった。

5. 結論

本研究から応力増加率の変化が岩石のピーク強度とピ ークひずみに影響を与えることが明らかになった。

初期垂直応力が一定の場合に、応力増加率が大きいほ ど、AEのヒット最大発生数が少なく、最大発生数出現ま でが早くなる。また、領域 Bの損傷率は徐々に増加する が、領域 Aの損傷率は大きく変化しない。このことによ り、損傷状況の解析を行う際に、AE発生数を一つの指標 として用いる事ができる。しかしながら、現状では実際 の岩石(炭鉱)の採掘を行う場合に地下構造、応力環境 などの影響も考慮しなければならない。

- 1) 黄 はお:「不等分布荷重下における類岩材料の力学特 性とAE 特性に関する研究」,全地連技術フォーラム2019 論文集,論文 No.128, 2019.9.
- Kachanov, L.M., Izv. Akad. Nauk USSR, Otdgel. Tekh. Nauk, No. 8, 26 (1958).